
Reaching New Scales
with the

CMS HTCondor Global Pool

JAMES LETTS & ANTONIO PÉREZ-CALERO
on behalf of the Submission Infrastructure Group

of the CMS Experiment

May 3, 2017

Global Pool

2

JobJobJobJobJob

Frontend

Factory

Grid,
Cloud

schedd

Negotiator
startdstartdstartdstartdstartdstartd

A global HTCondor pool provisioned by
glideinWMS.

CMS Submission Infrastructure Group May 3, 2017

HTCondor
Central Manager

glideinWMS

glideinWMS

Job Pressure

3

JobJobJobJobJob

Frontend

Factory

Grid,
Cloud

schedd

Negotiator
startdstartdstartdstartdstartdstartd

CMS Submission Infrastructure Group May 3, 2017

HTCondor
Central Manager

glideinWMS

glideinWMS

The Frontend reads the job queues on the
schedd’s.

Resource Request

4

JobJobJobJobJob

Frontend

Factory

Grid,
Cloud

schedd

Negotiator
startdstartdstartdstartdstartdstartd

CMS Submission Infrastructure Group May 3, 2017

HTCondor
Central Manager

glideinWMS

glideinWMS

The Frontend then requests the factory for
startd’s on the target sites.

Pilot Submission

5

JobJobJobJobJob

Frontend

Factory

Grid,
Cloud

schedd

Negotiator
startdstartdstartdstartdstartdstartd

CMS Submission Infrastructure Group May 3, 2017

HTCondor
Central Manager

glideinWMS

glideinWMS

The Factory then submits (with HTCondor)
pilot jobs to the target sites which launch
startd’s registered in the Global Pool.

Negotiation

6

JobJobJobJobJob

Frontend

Factory

Grid,
Cloud

schedd

Negotiator
startdstartdstartdstartdstartdstartd

CMS Submission Infrastructure Group May 3, 2017

HTCondor
Central Manager

glideinWMS

glideinWMS

The Negotiator then matches jobs in the
schedd queues with startd’s.

Why a Global Pool?

• Before the Global Pool, we had
different HTCondor pools for data
analysis and production activities.

• As we moved away from the original
tiered LHC Computing Model, we wanted
to flexibly run different types of
workflows across tiers, as well as
integrating new types of Cloud and
allocation-based resources.

7CMS Submission Infrastructure Group May 3, 2017

Tiered (MONARC) Model

8CMS Submission Infrastructure Group May 3, 2017

Tier-0

Tier-1

Tier-2

Production

Digitization

Generation

Analysis

when networking was a scarcer resource

Global Model

9CMS Submission Infrastructure Group May 3, 2017

Tier-0

Tier-1

Tier-2

Production

Digitization

Generation

Analysis Cloud, HLT,
HPC

Why a Global Pool?
• We now have a unified, multi-core, HTCondor Global
Pool with re-usable pilots.

• For reasons of stability for CMS data taking, the
Tier-0 has its own separate pool.

• CMS is also moving away from data locality: AAA,
xrootd, caching, etc.

• Makes resource scheduling much more complicated!
CPU, Memory, Disk, and now I/O. Network is still
scarce in places.

• In 2016, CMS moved into a resource-constrained
environment for the first time.

10CMS Submission Infrastructure Group May 3, 2017

Scalability

11

JobJobJobJobJob

Frontend

Factory

Grid,
Cloud

schedd

Negotiator
startdstartdstartdstartdstartdstartd

Main limits to scalability:
• I/O between and within these components
• Speed of individual components
Driven by combinatorics of Matchmaking:
(RRLs x startd’s)

CMS Submission Infrastructure Group May 3, 2017

HTCondor
Central Manager

glideinWMS

glideinWMS

Auto-clusters
• Multi-core and longer-running jobs ease the
scale limitations: fewer jobs in the system.

• Unfortunately, arrival of analysis and
production jobs is very chaotic:

12CMS Submission Infrastructure Group May 3, 2017

Up to 20K auto-clusters
have been observed.

Auto-clusters
• Multi-core and longer-running jobs ease the
scale limitations: fewer jobs in the system.

• Unfortunately, arrival of analysis and
production jobs is very chaotic:

13CMS Submission Infrastructure Group May 3, 2017

Jobs arrive to queues
in a bursty fashion.

Challenges

• Most recent scalability limits over the
past few years have been found in the
Central Manager.

• Scale tests with single-core jobs and
conducted with the OSG in 2014 at 200,000
static slots found that separation of the
CCB’s onto hardware separate from the
Central Manager was essential to go beyond
150,000 CPUs (in the lab).

14CMS Submission Infrastructure Group May 3, 2017

http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062014

Challenges
• However, in the wild, a new blocker arose in
2016 at ~155,000 CPUs in a multi-core
environment.

• Symptom: Central Manager machine dropping UDP
updates.

• CMS worked closely with the HTCondor developers
to study the problem. Finally found out that
the Top Collector was being blocked by queries.

• Limited number of forked query workers
exhausted, remaining queries were blocking the
Top Collector.

15CMS Submission Infrastructure Group May 3, 2017

Solution
• Developers’ solution was to queue updates, not
let them go to the Top Collector, and
prioritize queries from the Negotiator.

16CMS Submission Infrastructure Group May 3, 2017

Evolution

• In the past year we have gone from 100K CPU
cores to a peak of 240K.

17CMS Submission Infrastructure Group May 3, 2017

Evolution

• In the past year we have gone from 100K CPU
cores to a peak of 240K.

18CMS Submission Infrastructure Group May 3, 2017

UDP blocking

Earlier Issues
• Negotiator scalability has been an issue we
have encountered several times so far.

• Since the beginning of 2015 we run 3 separate
Negotiators in parallel based on resource type:
Tier-1, U.S. Tier-2, and the rest. Each group
~80K CPU cores.

• Allows us to do resource-based fair share:
production gets 95% of the Tier-1 sites, while
rest are 50% physics analysis.

• HTCondor developers have been parallelizing the
Negotiator even more since.

19CMS Submission Infrastructure Group May 3, 2017

Scale Tests
• In principle, CMS wants to find and fix blockers in
scale tests, not in a production system.

• Last round of scale tests with OSG in 2014 used the
concept of “über-glideins”: one pilot launches multiple
startd’s, thus achieving the I/O of a much larger pool:

20CMS Submission Infrastructure Group May 3, 2017

• Using a factor of
32, can reach the
I/O of 500K
startd’s using
only 15,625
physical cores.

http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062014

2017 Scale Tests

• In principle CMS can do something similar
within the existing Global Pool, since we are
not worried about the scalability of
glideinWMS so much as HTCondor.

• Planning the next round of tests for August,
which is historically a low period of usage
after the major summer conferences, on new,
beefier VMs provided by CERN/IT (~96GB RAM).

• Hope to find the next blockers in a test
environment rather than in the wild!

21CMS Submission Infrastructure Group May 3, 2017

Future

• Future challenges besides global scalability
that we are facing for 2017-2018:

• Scheduling I/O: Now that individual sites are
approaching 50-100K CPU cores, how can we not
kill the network or the storage at the site?
Or even across groups of sites? (CMS is moving
away from data locality)

• Improving scheduling efficiency (next slide):

22CMS Submission Infrastructure Group May 3, 2017

Improving
Scheduling Efficiency

• Filling multi-core p-slots is a multi-dimensional
problem:

• Job requirements (e.g. time, CPUs, memory, resizable
jobs)

• Bursty nature of job arrival (time)

• Resource constraints (CPUs, Memory)

• Fair-share and priority (ranking)

• Pilot lifetime (time)

23CMS Submission Infrastructure Group May 3, 2017

Improving
Scheduling Efficiency

• Pool partitioning evolves over time to serve
the demand.

• The challenge is that sometimes more CPU cores
than desired are left unscheduled.

24CMS Submission Infrastructure Group May 3, 2017

Improving
Scheduling Efficiency

• There is a ~5% irreducible amount of wasted CPU from
retiring glideins (p-slots). Tunable?

• High-memory jobs can take all of the RAM of a pilot,
so that (justifiably) some CPU will be left unused.

25CMS Submission Infrastructure Group May 3, 2017

Conclusions

• We thank the HTCondor development team for
their close collaboration.

• We have met some interesting scalability and
stability challenges over the past couple of
years and look forward to reaching even
greater heights in the years to come.

26CMS Submission Infrastructure Group May 3, 2017

