
Effective	use	of	cgroups with	
HTCondor

Tom	Downes

Center	for	Gravitation,	Cosmology	and	Astrophysics
University	of	Wisconsin-Milwaukee	

LIGO	Scientific	Collaboration

HTCondor	Week	2017

What	are	Control	Groups	(cgroups)

• Condor	is	a	fault	tolerant	system	for	running	jobs
• Control	Groups	provide	fault	tolerance	for	systems	by	managing	
access	to	resources	like	CPU	/	memory	/	devices	/	network
• systemd tightly	coupled:	RHEL	7+,	Debian 8+,	Ubuntu	15.04+
• Broadly	coupled	to	movement	to	isolate	processes	from	one	another
• Vastly	improve	measurements	of	job	resource	utilization

I	got	my	philosophy
• I	“speak	for	the	systems”	not	jobs
• Services	working	should	be	normal
• Need	system	autonomy	to	live	life
• Go	on	vacation
• Work	on	important	things

2000345.0 scaudill 4/18 23:58 Error from
slot1_3@execute1068.nemo.uwm.edu: Job has gone over memory limit of 5120
megabytes. Peak usage: 5320 megabytes.

The	punchline
$ cat /etc/condor/config.d/cgroups
BASE_CGROUP=/system.slice/condor.service
CGROUP_MEMORY_LIMIT_POLICY=soft

How	cgroups work
• Controllers	manage	a	single	resource	
(CPU,	memory,	etc.)	hierarchically
• Each	controller	is	K-ary tree	structure	
exposed	in	directory	structure
• Processes	are	assigned	to	nodes
• Condor	daemons	in	systemd cgroup
• Condor	adds	leaf	nodes	for	jobs!

memory

system.slice

condor.service

slot1_1 slot1_2
cron.service

user.slice

user-1296

$ cat /sys/fs/cgroup/memory/system.slice/condor.service/tasks
1640
...

Memory	controller

• Measures	RAM	usage	(Resident	Set	Size)
• Separately	measures	combined RAM	and	swap	usage
• Actual	swap	usage	determined	by	swappiness,	a	cgroup setting!
• RHEL7	docs	misleadingly	suggest	that	you	can	prevent swap	usage
• the	only	unused	swap	is	no	swap!

• Hierarchical	accounting:	descendant	cgroups count	toward	ancestors

Debian /	Ubuntu

• By	default,	Debian does	not	enable	memory	controller
• Neither	Debian/Ubuntu	enable	swap	features	within	controller
$ grep GRUB_CMDLINE_LINUX_DEFAULT /etc/default/grub
GRUB_CMDLINE_LINUX_DEFAULT="quiet cgroup_enable=memory swapaccount=1”
$ update-grub
$ shutdown –r now

• Preseed at	install	(avoid	first	boot	problems!)	with
grub-pc grub2/linux_cmdline_default string quiet cgroup_enable=memory swapaccount=1

Limiting	Condor	execute	nodes
• In	addition	to	job	limits,	let’s	limit	total	memory	used	by	Condor	

daemons	and	processes
• Use	ExecStartPost to	limit	RAM+swap (thanks,	RHEL7	docs!)

$ cat /etc/systemd/system/condor.service.d/memory.conf
[Service]
MemoryAccounting=true
MemoryLimit=4G
this value must be greater than or equal to MemoryLimit
ExecStartPost=/bin/bash -c "echo 4G >
/sys/fs/cgroup/memory/system.slice/condor.service/memory.memsw.limit_in_bytes"

Limiting	users	on	a	submit	node

$ cat /etc/systemd/system/user.slice.d/50-MemoryLimit.conf
[Slice]
MemoryAccounting=true
MemoryLimit=6G

$ cat /etc/systemd/system/openssh-server.service.d/memory.conf
[Service]
LimitAS=2147483648

• Add	same	condor.service limits	as	on	execute	node
• Configuration	below	limits	total	RAM	by	all	users at	command	line
• For	users	who	login	via	ssh,	sets	per-process	virtual	memory	limit

Details	of	enforcement	(hard	limit	on	Condor)

When	hard limit on	whole	condor	service	is	reached…
1. Kernel	attempts	to	reclaim	memory	from	cgroup +	descendants
• swap	out	/	delete	file	cache	until	below	hard	limit	or	soft	limit	(if	enabled)

2. If	that	fails,	OOM	killer	invoked	on	cgroup +	descendants
3. OOM	killer	targets	jobs	with	high	/proc/[pid]/oom_score
• “bad”	jobs	are	ones	that	are	closest	to	their	limit
• jobs	have	oom_score_adj set	to	appear,	at	minimum,	at	80%+	of	their	limit

Details	of	enforcement	(soft	limits	on	jobs)
• Soft	limits	on	jobs	==	
”OOM	event	will	occur	
above	the	slot	cgroup”
• With	hard	limit	on	
Condor,	see	prior	slide
• Otherwise,	it	will	occur	
when	all	system	RAM	
and	swap	are	exhausted
• In	both	cases,	Condor	
intercepts	OOM	to	
perform	kill	and	cleanup

Differences	in	behavior

• Hitting	Condor	service	hard	limit	is	different	from	exhausting	system
• If	system	resources	exhausted,	global	OOM	“outside”	of	cgroups
• In	this	case,	the	oom_score_adj set	by	Condor	is	very	important!

• If	triggered	by	Condor	hard	limit,	every	job	sees	OOM	event!
• In	this	case,	the	oom_score_adj set	by	Condor	doesn’t	matter	because	all	
jobs	have	same	value	(-800)
• Condor	<	8.6:	responded	by	killing	every	job	on	node!
• Condor	>=	8.6:	with	default	value	of	IGNORE_LEAF_OOM=True, examines	job	
before	killing.	Don’t	kill	if	<90%	of	its	request.

cgroups-v2

• Controllers	unified	into	much	simpler	tree	structure
• Processes	live	only in	leaf	nodes
• Memory	controller	eschews	soft/hard	limits	in	favor	of	low/high/max
• Built-in	understanding	that	job	memory	usage	is	hard	to	predict:	be	flexible
• Eliminates	userspace OOM	handling
• Encourages	applications	to	monitor	memory	and	change	limit	dynamically

• Memory	controller	measures	swap	as	its	own	resource
• Possible	to	use	memory	v2	interface	while	using	v1	for	others
• cgroups author:	https://www.youtube.com/watch?v=PzpG40WiEfM

Thoughts

• Define	system	stability	as	the	goal	rather	than	constraining	jobs
• Memory	management
• Soft	limits	don’t	really	do	much	except	encourage	a	bit	of	swapping
• Soft	and	hard	limits	are	separate	settings.	Could	set	both	for	jobs!
• There	must be	a	swappiness knob
• Re-consider	IGNORE_LEAF_OOM	behavior	for	jobs	at	90%	level
• Consider	alternative	approach	in	spirit	of	cgroups-v2
• cgroups-v2	will	be	production	opt-in	on	Debian 9	in	next	few	months

• Swap	existence	is	a	matter	of	religion
• Might	be	able	to	use	systemd/cgroups to	really	make	backfill	work	nicely

Increase	use	of	systemd?

• Condor	could	mimic	systemd by	creating	many	scope	units
• In	prepping	this	talk,	I	concluded	that	one	still	needed	to	write	
directly	to	cgroups API,	but	might	examine	long-term	benefits	of	using	
systemd as	stable	interface	to	cgroups
• If	able	to	be	made	compatible	with	/etc configuration	files	or	
templates,	allows	user	to	use	cgroups for	other	resources	without	
developing	new	Condor	knobs

