
Singularity and
HTCondor

Brian Bockelman
HTCondor Week 2017

What problems are we
solving?

• Isolation: We launch arbitrary user code (“payload”) that shouldn’t have
access to our wrapper scripts (“pilot”). Specifically:

• File isolation: pilot determines what files the payloads can read and write.

• Process isolation: payload can only interact with (see, signal, trace) its
own processes.

• These are simple kinds of isolation. Others (e.g., kernel isolation,
network isolation) are less important!

• glexec replacement: Retire our particularly problematic current solution to
isolation. Niche and expensive.

• Homogeneous / portable OS environments: Make user OS environment as
minimal and identical as possible!

Introducing: Singularity
• Singularity is a container solution tailored for the HPC

use case.

• It allows for a portable of OS runtime
environments.

• It can provide isolation needed by our users.

• Simple isolation: Singularity does not do resource
management (i.e., limiting memory use), leaving that
to the batch system.

• Operations: No daemons, no UID switching; no
edits to config file needed. “Install RPM and done.”

• Goal: User has no additional privileges by being
inside container. E.g., disables all setuid binaries
inside the container.

http://singularity.lbl.gov

http://singularity.lbl.gov

Yet Another Container
Syndrome

• “But HTCondor already supports Docker! Why do
we need Yet Another Container?”

• Singularity support works even if HTCondor runs
as non-root (i.e., glideinWMS).

• Singularity does not require any additional system
services / daemons. Tradeoff: requires setuid.

• Works inside Docker — important for sites that
already invest heavily in Docker (like mine!).

IMPORTANT: 
Singularity provides a path

to non-setuid isolation
And there was great rejoicing!

🎉

Why Docker?
• There remain a good number of reasons to use Docker

universe:

• Docker implements additional resource management and
isolation mechanisms.

• Built-in image distribution mechanism.

• Wider acceptance / larger ecosystem / more mature.

• To each their own: pick the correct technology to fit your site.

• Nebraska uses both: Docker for site batch system, Singularity
for pilots inside the batch system.

View From the Worker Node
Site Batch System

Docker

Pilot

Singularity

Singularity

Payload

Payload

View From the Pilot

Pilot

Singularity

Singularity

Payload

Payload

No visibility into the host OS!

View From the Payload

Payload

User jobs are isolated from each other,
but it’s still a familiar OS environment

OS Portability
• Containers provide OS portability - the ability to define your

job’s OS environment and have it identical everywhere.

• Solves a very tough transition problem for CMS - we need
something like containers to move our sites forward!

Tomorrow’s CHTC Users

OS %age of CHTC
users

Require EL 7 Was 5%, going ↑
Either EL 6 or 7 Was 90%, going ?
Require EL 6 Was 5%, going ↓

CMS is here; old
releases

CANNOT use
EL7!

On Image Distribution…
• Docker images are a list of layers, each a tarball.

• DockerHub limit is 10GB. In practice, ranges of 500MB (minimal
image, caring users) to 4GB (large scientific organization) are common.

• Singularity has three image formats:

• Native format: raw filesystem image, loopback mounted. Large -
10GB.

• SquashFS-based compressed image. Slightly smaller than Docker
(stays compressed on disk).

• Simple chroot directory.

• How does one deliver these to thousands of worker nodes?

Image Distribution
• Observed several strategies in the wild:

• Drop raw image onto shared file system.

• Copy image files to worker node.

• Synchronize chroot directory to CVMFS.

• Tradeoffs to consider:

• How much freedom will you give to users? Can they specify their own image?
Are they restricted to a whitelist?

• Use of cache (what is the working set size?). If user-specifies images, the working
set size might be fairly unpredictable.

• Scalability of distribution mechanism.

• Does the full image get downloaded to the worker node?

Singularity around town
• Some of the heaviest users of Singularity are on the OSG:

• Currently, CMS launches about 1.2M containers / week on OSG.

• OSG VO has launched 17M containers since mid-February.

• To see how OSG exposes this functionality to users, see: https://
go.unl.edu/osg-singularity

• At several large NSF supercomputing sites: SDSC, TACC.

• Popular across a range of HPC sites (med centers, university
computing centers, big labs), which was Singularity’s original
niche.

https://go.unl.edu/osg-singularity
https://go.unl.edu/osg-singularity

Integration with HTCondor
• Singularity availability and version advertised in ClassAd.

• HTCondor will launch jobs inside Singularity based on a few condor_startd configuration
variables:

• SINGULARITY_JOB: If true, then launch job inside Singularity.

• SINGULARITY_IMAGE_EXPR: ClassAd expression; evaluated value is the path used for the
Singularity image.

• SINGULARITY_TARGET_DIR: Location inside Singularity container where HTCondor
working directory is mapped.

• See https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828 for details. Examples follow.

• The details are a bit hidden under the cover; still experimenting with the best user interface.

• While base functionality is in 8.6.x, more UI work will occur in HTCondor 8.7.x.

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828

Example:  
All Jobs Into the Container

• All config is controlled by the condor_startd.

• Example config:

Only set if Singularity is not in $PATH.
#SINGULARITY = /opt/singularity/bin/singularity
Forces _all_ jobs to run inside singularity.
SINGULARITY_JOB = true
Forces all jobs to use the CernVM-based image.
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3"
Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the image.
SINGULARITY_TARGET_DIR = /srv
Writable scratch directories inside the image. Auto-deleted after
the job exits.
MOUNT_UNDER_SCRATCH = /tmp, /var/tmp

Example:  
Only on User Request

• However, startd config variable can reference the
user job using TARGET.

• In this configuration, Singularity is only used if the
user specifies an image in their submit file:

SINGULARITY_JOB = !isUndefined(TARGET.SingularityImage)
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Example:  
Image based on OS name

• Startd config snippet:

• User adds this to the job:  
 

SINGULARITY_JOB = \
 (TARGET.DESIRED_OS isnt MY.OpSysAndVer) && \
 ((TARGET.DESIRED_OS is "CentOS6") || \
 (TARGET.DESIRED_OS is "CentOS7"))
SINGULARITY_IMAGE_EXPR = \
 (TARGET.DESIRED_OS is "CentOS6") ? \
 ”/cvmfs/singularity.opensciencegrid.org/library/centos:centos6” : \
 ”/cvmfs/singularity.opensciencegrid.org/library/centos:centos7”

+DESIRED_OS="CentOS6"

Conclusions
• Singularity is another container technology in our toolbox.

• Different set of tradeoffs than Docker:

• I.e., setuid binary but no system service.

• Currently, most popular where HTCondor runs as non-root.

• Interface will be a work-in-progress during 2017. Currently,
completely managed/implemented by sysadmin.

• CMS and OSG utilize Singularity as a mechanism for isolation
and OS portability.

