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What problems are we 
solving?

• Isolation: We launch arbitrary user code (“payload”) that shouldn’t have 
access to our wrapper scripts (“pilot”).  Specifically: 

• File isolation: pilot determines what files the payloads can read and write. 

• Process isolation: payload can only interact with (see, signal, trace) its 
own processes. 

• These are simple kinds of isolation.  Others (e.g., kernel isolation, 
network isolation) are less important! 

• glexec replacement: Retire our particularly problematic current solution to 
isolation.  Niche and expensive. 

• Homogeneous / portable OS environments: Make user OS environment as 
minimal and identical as possible!



Introducing: Singularity
• Singularity is a container solution tailored for the HPC 

use case. 

• It allows for a portable of OS runtime 
environments. 

• It can provide isolation needed by our users. 

• Simple isolation: Singularity does not do resource 
management (i.e., limiting memory use), leaving that 
to the batch system. 

• Operations:  No daemons, no UID switching; no 
edits to config file needed.  “Install RPM and done.” 

• Goal: User has no additional privileges by being 
inside container.  E.g., disables all setuid binaries 
inside the container.

http://singularity.lbl.gov

http://singularity.lbl.gov


Yet Another Container 
Syndrome

• “But HTCondor already supports Docker!  Why do 
we need Yet Another Container?” 

• Singularity support works even if HTCondor runs 
as non-root (i.e., glideinWMS). 

• Singularity does not require any additional system 
services / daemons.  Tradeoff: requires setuid. 

• Works inside Docker — important for sites that 
already invest heavily in Docker (like mine!).



IMPORTANT: 
Singularity provides a path 

to non-setuid isolation
And there was great rejoicing!

🎉



Why Docker?
• There remain a good number of reasons to use Docker 

universe: 

• Docker implements additional resource management and 
isolation mechanisms. 

• Built-in image distribution mechanism. 

• Wider acceptance / larger ecosystem / more mature. 

• To each their own: pick the correct technology to fit your site. 

• Nebraska uses both: Docker for site batch system, Singularity 
for pilots inside the batch system.
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No visibility into the host OS!



View From the Payload

Payload

User jobs are isolated from each other, 
but it’s still a familiar OS environment



OS Portability
• Containers provide OS portability - the ability to define your 

job’s OS environment and have it identical everywhere. 

• Solves a very tough transition problem for CMS - we need 
something like containers to move our sites forward!

Tomorrow’s CHTC Users

OS %age of CHTC 
users

Require EL 7 Was   5%, going ↑
Either EL 6 or 7 Was 90%, going ?
Require EL 6 Was   5%, going ↓

CMS is here; old 
releases 

CANNOT use 
EL7!



On Image Distribution…
• Docker images are a list of layers, each a tarball. 

• DockerHub limit is 10GB.  In practice, ranges of 500MB (minimal 
image, caring users) to 4GB (large scientific organization) are common. 

• Singularity has three image formats: 

• Native format: raw filesystem image, loopback mounted.  Large - 
10GB. 

• SquashFS-based compressed image.  Slightly smaller than Docker 
(stays compressed on disk). 

• Simple chroot directory.   

• How does one deliver these to thousands of worker nodes?



Image Distribution
• Observed several strategies in the wild: 

• Drop raw image onto shared file system. 

• Copy image files to worker node. 

• Synchronize chroot directory to CVMFS. 

• Tradeoffs to consider: 

• How much freedom will you give to users?  Can they specify their own image?  
Are they restricted to a whitelist? 

• Use of cache (what is the working set size?).  If user-specifies images, the working 
set size might be fairly unpredictable. 

• Scalability of distribution mechanism. 

• Does the full image get downloaded to the worker node?



Singularity around town
• Some of the heaviest users of Singularity are on the OSG: 

• Currently, CMS launches about 1.2M containers / week on OSG. 

• OSG VO has launched 17M containers since mid-February. 

• To see how OSG exposes this functionality to users, see: https://
go.unl.edu/osg-singularity  

• At several large NSF supercomputing sites: SDSC, TACC. 

• Popular across a range of HPC sites (med centers, university 
computing centers, big labs), which was Singularity’s original 
niche.

https://go.unl.edu/osg-singularity
https://go.unl.edu/osg-singularity


Integration with HTCondor
• Singularity availability and version advertised in ClassAd. 

• HTCondor will launch jobs inside Singularity based on a few condor_startd configuration 
variables: 

• SINGULARITY_JOB: If true, then launch job inside Singularity. 

• SINGULARITY_IMAGE_EXPR: ClassAd expression; evaluated value is the path used for the 
Singularity image. 

• SINGULARITY_TARGET_DIR: Location inside Singularity container where HTCondor 
working directory is mapped. 

• See https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828 for details.  Examples follow. 

• The details are a bit hidden under the cover; still experimenting with the best user interface. 

• While base functionality is in 8.6.x, more UI work will occur in HTCondor 8.7.x.

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828


Example:  
All Jobs Into the Container

• All config is controlled by the condor_startd. 

• Example config:

# Only set if Singularity is not in $PATH. 
#SINGULARITY = /opt/singularity/bin/singularity 
# Forces _all_ jobs to run inside singularity. 
SINGULARITY_JOB = true 
# Forces all jobs to use the CernVM-based image. 
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3" 
# Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the image. 
SINGULARITY_TARGET_DIR = /srv 
# Writable scratch directories inside the image.  Auto-deleted after 
the job exits. 
MOUNT_UNDER_SCRATCH = /tmp, /var/tmp 



Example:  
Only on User Request

• However, startd config variable can reference the 
user job using TARGET. 

• In this configuration, Singularity is only used if the 
user specifies an image in their submit file:

SINGULARITY_JOB = !isUndefined(TARGET.SingularityImage) 
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"



Example:  
Image based on OS name

• Startd config snippet: 

• User adds this to the job:  
 

SINGULARITY_JOB = \ 
   (TARGET.DESIRED_OS isnt MY.OpSysAndVer) && \ 
      ((TARGET.DESIRED_OS is "CentOS6") || \ 
       (TARGET.DESIRED_OS is "CentOS7")) 
SINGULARITY_IMAGE_EXPR = \ 
   (TARGET.DESIRED_OS is "CentOS6") ? \ 
      ”/cvmfs/singularity.opensciencegrid.org/library/centos:centos6” : \ 
      ”/cvmfs/singularity.opensciencegrid.org/library/centos:centos7”

+DESIRED_OS="CentOS6"



Conclusions
• Singularity is another container technology in our toolbox. 

• Different set of tradeoffs than Docker: 

• I.e., setuid binary but no system service. 

• Currently, most popular where HTCondor runs as non-root. 

• Interface will be a work-in-progress during 2017.  Currently, 
completely managed/implemented by sysadmin. 

• CMS and OSG utilize Singularity as a mechanism for isolation 
and OS portability.


