Singularity and
HTCondor

Brian Bockelman
TCondor Week 2017

What problems are we
solving”?

» Isolation: We launch arbitrary user code (“payload”) that shouldn't have
access to our wrapper scripts (“pilot”). Specifically:

* File isolation: pilot determines what files the payloads can read and write.

* Process isolation: payload can only interact with (see, signal, trace) its
OWN Processes.

* These are simple kinds of isolation. Others (e.g., kernel isolation,
network isolation) are less important!

* glexec replacement: Retire our particularly problematic current solution to
Isolation. Niche and expensive.

« Homogeneous / portable OS environments: Make user OS environment as
minimal and identical as possible!

Introducing: Singularity

Singularity is a container solution tailored for the HPC
use case.

* |t allows for a portable of OS runtime
environments.

|t can provide isolation needed by our users.
Simple isolation: Singularity does not do resource

management (i.e., limiting memory use), leaving that
to the batch system.

Operations: No daemons, no UID switching; no httD//SlnguIarltbeI .gov

edits to config file needed. “Install RPM and done.”

Goal: User has no additional privileges by being
Inside container. E.qg., disables all setuid binaries

Inside the container.

http://singularity.lbl.gov

Yet Another Container

Syndrome

o “But HTCondor already supports Docker! Why do
we need Yet Another Container”?”

» Singularity support works even it HTCondor runs
as non-root (i.e., glideinWMS).

e Singularity does not require any additional system
services / daemons. Tradeoff: requires setuid.

 Works inside Docker — important for sites that
already invest heavily in Docker (like minel).

IMPORTANT:
Singularity provides a path
{0 Nnon-setuid Isolation

And there was great rejoicing!

¢ v
"N)
“
~ ‘v"
~
* .

Why Docker®?

* There remain a good number of reasons to use Docker
universe:

* Docker implements additional resource management and
Isolation mechanisms.

e Built-in image distribution mechanism.
« Wider acceptance / larger ecosystem / more mature.
e To each their own: pick the correct technology to fit your site.

 Nebraska uses both: Docker for site batch system, Singularity
for pilots inside the batch system.

View From the Worker Node

/usr/sbin/condor_master -f
_ condor_procd -A /var/run/condor/procd_pipe -L /var/log/condor/ProcdlLog -R 1000000 -S 60 -C 554
_ condor_shared_port -f S_ B h S
_ condor_startd -f
_ condor_starter -f -a slotl_1 red-gw2.unl.edu Ite atc VStem
_ python /usr/local/libexec/condor-docker run --cpu-shares=560 --memory=250000m --hostname cmspr
_ /usr/bin/docker-current run --cpu-shares=560 --memory=250000m --name HTCJob406040_0_slotl_
/usr/bin/dockerd-current --add-runtime docker-runc=/usr/libexec/docker/docker-runc-current --default-runti
DOCker _ /usr/bin/docker-containerd-current -1 unix:///var/run/docker/libcontainerd/docker-containerd.sock --sh
_ /usr/bin/docker-containerd-shim-current 737770d03e6f22108ac9acb89def79655fffbafbfc4fe7082f43a3bb40
_ /bin/bash ./condor_exec.exe -v std -name v3_2 -entry (MS_T2_US_Nebraska_Red_gwZ_whole -clientn
_ /bin/bash /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor_startup.sh glidein_c
P-I t _ /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor/sbin/condor_master -f -pid
I O _ condor_procd -A /var/lib/condor/execute/dir_729792/glide_McAkr7/log/procd_address
_ condor_startd -f
_ condor_starter -f -a slotl_1 vocms@31l.cern.ch
S' I 't | _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
Ingu arl y I _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/col
I _ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
I _ python2 Startup.py
I _ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
I _ cmsRun -j FrameworkJobReport.xml PSet.py
_ condor_starter -f -a slotl_8 vocms@31l.cern.ch
| _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
I _ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/co
I _ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
I
I
I

Payload

Singularity

_ python2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

Payload

View From the Pllot

Pilot

Singularity
Payload

Singularity
Payload

No visibility into the host OS!

_ /bin/bash ./condor_exec.exe -v std -name v3_2 -entry (MS_T2_US_Nebraska_Red_gw2_whole -clientn
_ /bin/bash /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor_startup.sh glidein_c
_ /var/1ib/condor/execute/dir_729792/glide_McAkr7/main/condor/sbin/condor_master -f -pid
_ condor_procd -A /var/lib/condor/execute/dir_729792/glide_McAkr7/log/procd_address
_ condor_startd -f
_ condor_starter -f -a slotl_1 vocms@31l.cern.ch

_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/co
_ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmLl
_ pythonZ2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

_ condor_starter -f -a slotl_8 vocms@31l.cern.ch

_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/condor
_ /usr/libexec/singularity/sexec /srv/.osgvo-user-job-wrapper.sh /srv/co
_ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
_ pythonZ2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

View From the Payloao

User jobs are isolated from each other,
but it’s still a familiar OS environment

_ /bin/bash /srv/condor_exec.exe pdmvserv_task_EGM-PhaseISpringl7wmL
_ pythonZ2 Startup.py
_ /bin/bash /srv/job/WMTaskSpace/cmsRunl/cmsRunl-main.sh sl
_ cmsRun -j FrameworkJobReport.xml PSet.py

Payload

OS Portability

e Containers provide OS portability - the ability to define your
job’s OS environment and have it identical everywhere.

e Solves a very tough transition problem for CMS - we need
something like containers to move our sites forward!

Tomorrow’s CHTC Users

users CMS is here: old

Require EL 7 Was 5%, going 1 eleases
EitherEL6or7 Was 90%, going ? CANNOT use
Require EL 6 Was 5%, going | EL7!

On Image Distribution...

* Docker images are a list of layers, each a tarball.

e DockerHub limitis 10GB. In practice, ranges of 500MB (minimal
image, caring users) to 4GB (large scientific organization) are common.

Singularity has three image formats:

* Native format: raw filesystem image, loopback mounted. Large -
10GB.

e SquashFS-based compressed image. Slightly smaller than Docker
(stays compressed on disk).

e Simple chroot directory.

- How does one deliver these to thousands of worker nodes?

Image Distripution

* Observed several strategies in the wild:
* Drop raw image onto shared file system.
» Copy image files to worker node.
e Synchronize chroot directory to CVMFS.

e Tradeoffs to consider:

 How much freedom will you give to users” Can they specify their own image”?
Are they restricted to a whitelist?

e Use of cache (what is the working set size?). If user-specifies images, the working
set size might be fairly unpredictable.

e Scalability of distribution mechanism.

e Does the full image get downloaded to the worker node?

Singularity around town

* Some of the heaviest users of Singularity are on the OSG:
e Currently, CMS launches about 1.2M containers / week on OSG.
* OSG VO has launched 17M containers since mid-February.

e To see how OSG exposes this functionality to users, see: https://
go.unl.edu/osg-singularity

* At several large NSF supercomputing sites: SDSC, TACC.

* Popular across a range of HPC sites (med centers, university
computing centers, big labs), which was Singularity’s original
niche.

https://go.unl.edu/osg-singularity
https://go.unl.edu/osg-singularity

Integration with HTCondor

* Singularity availability and version advertised in ClassAd.

* HTCondor will launch jobs inside Singularity based on a few condor startd configuration
variables:

* SINGULARITY JOB: If true, then launch job inside Singularity.

* SINGULARITY IMAGE EXPR: ClassAd expression; evaluated value is the path used for the
Singularity image.

* SINGULARITY TARGET DIR: Location inside Singularity container where HTCondor
working directory is mapped.

wiki.cs.wisc.edu/index.cqi/tkiview?tn=5828 for details. Examples follow.

* See https://htcondor-

* The details are a bit hidden under the cover; still experimenting with the best user interface.

* While base functionality is in 8.6.x, more Ul work will occur in HTCondor 8.7 .x.

https://htcondor-wiki.cs.wisc.edu/index.cgi/tktview?tn=5828

Example:
All Jobs Into the Container

 All config is controlled by the condor startd.

 Example contig:

Only set if Singularity is not in SPATH.

#SINGULARITY = /opt/singularity/bin/singularity

Forces all Jobs to run inside singularity.

SINGULARITY JOB = true

Forces all jobs to use the CernVM-based image.
SINGULARITY IMAGE EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Maps $ CONDOR SCRATCH DIR on the host to /srv inside the image.
SINGULARITY TARGET DIR = /srv

Writable scratch directories inside the image. Auto-deleted afte
the job exits.

MOUNT UNDER SCRATCH = /tmp, /var/tmp

Example:
Only on User Request

* However, startd contfig variable can reference the
user job using TARGET.

SINGULARITY JOB = !isUndefined (TARGET.SingularitylImage)
SINGULARITY IMAGE EXPR = TARGET.SingularityImage

* |n this configuration, Singularity is only used if the
user specifies an image in their submit file:

+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"

Example:
lmage based on OS name

e Startd config snippet:

SINGULARITY JOB = \
(TARGET .DESIRED OS isnt MY.OpSysAndVer) && \
((TARGET.DESIRED OS is "CentOS6") || \
(TARGET.DESIRED OS is "CentOS7"))
SINGULARITY IMAGE EXPR = \
(TARGET.DESIRED OS is "CentOS6") ? \

”/cvmfs/singularity.opensciencegrid.org/library/centos:centos6”
”/cvmfs/singularity.opensciencegrid.org/library/centos:centos7”

* User adds this to the job:

+DESIRED 0S="CentOS6"

Conclusions

e Singularity is another container technology in our toolbox.
* Different set of tradeoffs than Docker:

e |.e., setuid binary but no system service.

* Currently, most popular where HTCondor runs as non-root.

* Interface will be a work-in-progress during 2017. Currently,
completely managed/implemented by sysadmin.

« CMS and OSG utilize Singularity as a mechanism for isolation
and OS portability.

