
HTCondor Week 2017 1

AN INTRODUCTION TO
USING

Christina Koch
May 2, 2017

HTCondor Week 2017 2

Covered In This Tutorial

•  What is HTCondor?
•  Running a Job with HTCondor
•  How HTCondor Matches and Runs Jobs
 - pause for questions -
•  Submitting Multiple Jobs with HTCondor
•  Testing and Troubleshooting
•  Use Cases and HTCondor Features
•  Automation

HTCondor Week 2017 3

Introduction

HTCondor Week 2017 4

HTCONDOR

What is HTCondor?

•  Software that schedules and runs
computing tasks on computers

HTCondor Week 2017 5

How It Works

•  Submit tasks to a queue (on a submit point)
•  HTCondor schedules them to run on

computers (execute points)

submit

	
	
	
	

execute

execute

execute

HTCondor Week 2017 6

Single Computer

submit
	
	
	
	

execute

execute

execute

HTCondor Week 2017 7

Multiple Computers

submit

	
	
	
	

execute

execute

execute

HTCondor Week 2017 8

Why HTCondor?
•  HTCondor manages and runs work on your

behalf
•  Schedule tasks on a single computer to not

overwhelm the computer
•  Schedule tasks on a group* of computers

(which may/may not be directly accessible to
the user)

•  Schedule tasks submitted by multiple users
on one or more computers

*in HTCondor-speak, a “pool”

HTCondor Week 2017 9

User-Focused Tutorial

•  For the purposes of this tutorial, we are
assuming that someone else has set up
HTCondor on a computer/computers to
create a HTCondor “pool”.

•  The focus of this talk is how to run
computational work on this system.

Setting up an HTCondor pool will be covered in “Administering HTCondor”,
by Greg Thain, at 1:15 today (May 2)

HTCondor Week 2017 10

Running a Job with HTCondor

HTCondor Week 2017 11

Jobs

•  A single computing task is called a “job”
•  Three main pieces of a job are the input,

executable (program) and output

•  Executable must be runnable from the
command line without any interactive input

HTCondor Week 2017 12

Job Example

•  For our example, we will be using an
imaginary program called
“compare_states”, which compares two
data files and produces a single output file.

wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

HTCondor Week 2017 13

File Transfer

•  Our example will use HTCondor’s file
transfer option:

Submit Execute

(submit_dir)/
input files
executable

(execute_dir)/
output files

HTCondor Week 2017 14

Job Translation

•  Submit file: communicates everything
about your job(s) to HTCondor

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

HTCondor Week 2017 15

Submit File

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 16

Submit File
•  List your

executable and
any arguments it
takes.

•  Arguments are
any options
passed to the
executable from
the command line.

compare_
states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 17

Submit File

•  Indicate
your input
files.

wi.dat

us.dat

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 18

Submit File

•  HTCondor will
transfer back
all new and
changed files
(usually
output) from
the job.

wi.dat.out

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 19

Submit File
•  log: file

created by
HTCondor to
track job
progress

•  output/
error:
captures
stdout and
stderr

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 20

Submit File

•  Request the
appropriate
resources
for your job
to run.

•  queue:
keyword
indicating
“create a
job.”

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 21

Submitting and Monitoring

•  To submit a job/jobs:
condor_submit submit_file_name

•  To monitor submitted jobs, use:
condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q

HTCondor Week 2017 22

More about condor_q

•  By default condor_q shows:
– user’s job only (as of 8.6)
–  jobs summarized in “batches” (as of 8.6)

•  Constrain with username, ClusterId or
full JobId, which will be denoted
[U/C/J] in the following slides

 $ condor_q-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId	 =	 ClusterId	 .ProcId

HTCondor Week 2017 23

More about condor_q

•  To see individual job information, use:
 condor_q -nobatch

•  We will use the -nobatch option in the

following slides to see extra detail about
what is happening with a job

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Week 2017 24

Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat

 job.log
 job.out
 job.err

$ condor_q - nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

HTCondor Week 2017 25

Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat

 job.log
 job.out
 job.err

Submit Node

(execute_dir)/

Execute Node

HTCondor Week 2017 26

Job Running
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat

 job.log
 job.out
 job.err

Submit Node

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

Execute Node

HTCondor Week 2017 27

Job Completes

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat

 job.log
 job.out
 job.err

Submit Node

HTCondor Week 2017 28

Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat

 job.log
 job.out
 job.err

wi.dat.out

Submit Node

HTCondor Week 2017 29

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host:
<128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host:
<128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated
 Cpus : 1 1
 Disk (KB) : 14 20480 17203728
 Memory (MB) : 1 20 20

HTCondor Week 2017 30

Job States

condor_
submit

Idle
(I)

Running
(R)

Completed
(C)

transfer
executable
and input to

execute
node

transfer
output
back to

submit node

in the queue leaving the queue

HTCondor Week 2017 31

Assumptions

•  Aspects of your submit file may be
dictated by infrastructure and configuration

•  For example: file transfer
– previous example assumed files would need

to be transferred between submit/execute

– not the case with a shared filesystem
should_transfer_files = NO

should_transfer_files = YES

HTCondor Week 2017 32

Shared Filesystem

•  If a system has a shared filesystem, where
file transfer is not enabled, the submit
directory and execute directory are the same.

shared_dir/
input
executable
output

Submit Execute Submit Execute

HTCondor Week 2017 33

Resource Request

•  Jobs are nearly always using a part of a
computer, not the whole thing

•  Very important to request appropriate
resources (memory, cpus, disk) for a job

whole
computer

your request

HTCondor Week 2017 34

Resource Assumptions

•  Even if your system has default CPU,
memory and disk requests, these may be too
small!

•  Important to run test jobs and use the log file
to request the right amount of resources:
–  requesting too little: causes problems for your

and other jobs; jobs might by held by HTCondor
–  requesting too much: jobs will match to fewer

“slots”

HTCondor Week 2017 35

Job Matching and �
Class Ad Attributes

HTCondor Week 2017 36

The Central Manager

•  HTCondor matches jobs with computers
via a “central manager”.

submit

	
	
	
	

execute

execute

execute

central manager

HTCondor Week 2017 37

Class Ads

•  HTCondor stores a list of information about
each job and each computer.

•  This information is stored as a “Class Ad”

•  Class Ads have the format:
AttributeName = value

HTCondor Manual: Appendix A: Class Ad Attributes

can be a boolean,
number, or string

HTCondor Week 2017 38

Job Class Ad
RequestCpus = 1
Err = "job.err"
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd = "/home/alice/tests/htcondor_week/
compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job"
Out = "job.out"
UserLog = "/home/alice/tests/
htcondor_week/job.log"
RequestMemory = 20
...

...

+
HTCondor configuration*

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

=	

*Configuring HTCondor will be covered in “Administering HTCondor”, by
Greg Thain, at 1:15 today (May 2)

HTCondor Week 2017 39

Computer “Machine” Class Ad

HasFileTransfer = true
DynamicSlot = true
TotalSlotDisk = 4300218.0
TargetType = "Job"
TotalSlotMemory = 2048
Mips = 17902
Memory = 2048
UtsnameSysname = "Linux"
MAX_PREEMPT = (3600 * 72)
Requirements = (START) &&
(IsValidCheckpointPlatform) &&
(WithinResourceLimits)
OpSysMajorVer = 6
TotalMemory = 9889
HasGluster = true
OpSysName = "SL"
HasDocker = true

...

=	

+
HTCondor configuration

HTCondor Week 2017 40

Job Matching
•  On a regular basis, the central manager

reviews Job and Machine Class Ads and
matches jobs to computers.

submit

	
	
	
	

execute

execute

execute

central manager

HTCondor Week 2017 41

Job Execution

•  (Then the submit and execute points
communicate directly.)

submit

	
	
	
	

execute

execute

execute

central manager

HTCondor Week 2017 42

Class Ads for People

•  Class Ads also provide lots of useful
information about jobs and computers to
HTCondor users and administrators

HTCondor Week 2017 43

Finding Job Attributes

$ condor_q -l 128.0
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd = "/home/alice/tests/htcondor_week/compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job”
UserLog = "/home/alice/tests/htcondor_week/job.log"
RequestMemory = 20
...

•  Use the “long” option for condor_q
condor_q -l JobId

HTCondor Week 2017 44

Useful Job Attributes

•  UserLog: location of job log
•  Iwd: Initial Working Directory (i.e.

submission directory) on submit node
•  MemoryUsage: maximum memory the job

has used
•  RemoteHost: where the job is running
•  BatchName: attribute to label job batches
•  ...and more

HTCondor Week 2017 45

Displaying Job Attributes

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

17315225 116 slot1_1@e092.chtc.wisc.edu 1709
17315225 118 slot1_2@e093.chtc.wisc.edu 1709
17315225 137 slot1_8@e125.chtc.wisc.edu 1709
17315225 139 slot1_7@e121.chtc.wisc.edu 1709
18050961 0 slot1_5@c025.chtc.wisc.edu 196
18050963 0 slot1_3@atlas10.chtc.wisc.edu 269
18050964 0 slot1_25@e348.chtc.wisc.edu 245
18050965 0 slot1_23@e305.chtc.wisc.edu 196
18050971 0 slot1_6@e176.chtc.wisc.edu 220

•  Use the “auto-format” option:
 condor_q [U/C/J] -af Attribute1 Attribute2 ...

HTCondor Week 2017 46

Other Displays

•  See the whole queue (all users, all jobs)
 condor_q -all

$ condor_q -all

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
alice DAG: 128 5/9 02:52 982 2 _ _ 1000 18888976.0 ...
bob DAG: 139 5/9 09:21 _ 1 89 _ 180 18910071.0 ...
alice DAG: 219 5/9 10:31 1 997 2 _ 1000 18911030.0 ...
bob DAG: 226 5/9 10:51 10 _ 1 _ 44 18913051.0
bob CMD: ce.sh 5/9 10:55 _ _ _ 2 _ 18913029.0 ...
alice CMD: sb 5/9 10:57 _ 2 998 _ _ 18913030.0-999

HTCondor Week 2017 47

condor_q Reminder

•  Default output is batched jobs
– Batches can be grouped manually using the
JobBatchName attribute in a submit file:

– Otherwise HTCondor groups jobs
automatically

•  To see individual jobs, use:
condor_q -nobatch

+JobBatchName = “CoolJobs”

HTCondor Week 2017 48

Class Ads for Computers
as condor_q is to jobs, condor_status is to computers (or “machines”)

$ condor_status
Name OpSys Arch State Activity LoadAv Mem Actvty
slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673 25+01
slot1_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_2@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00
slot1_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14
slot1_5@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 1024 0+01
slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19
slot1_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04
slot1_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 0.990 2048 0+02
slot1@c004.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.010 645 25+05
slot1_1@c004.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

 X86_64/LINUX 10962 0 10340 613 0 0 0 9
 X86_64/WINDOWS 2 2 0 0 0 0 0 0

 Total 10964 2 10340 613 0 0 0 9

HTCondor Manual: condor_status

HTCondor Week 2017 49

Machine Attributes

$ condor_status -l slot1_1@c001.chtc.wisc.edu
HasFileTransfer = true
COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”
TargetType = "Job”
TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu
UtsnameNodename = ""
Mips = 17902
MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =?= true)))
Requirements = (START) && (IsValidCheckpointPlatform) &&
(WithinResourceLimits)
State = "Claimed"
OpSysMajorVer = 6
OpSysName = "SL”
...

•  Use same options as condor_q:
 condor_status -l Slot/Machine
 condor_status [Machine] -af Attribute1 Attribute2 ...

HTCondor Week 2017 50

Machine Attributes

$ condor_q -compact
Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST
e007.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.00 1.24 Cb
e008.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.46 0.97 Cb
e009.chtc.wisc.edu x64/SL6 11 16 23.46 5 0.00 0.81 **
e010.chtc.wisc.edu x64/SL6 8 8 23.46 0 4.46 0.76 Cb
matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 0.00 **
matlab-build-5.chtc.wisc.edu x64/SL6 0 24 23.45 24 23.45 0.04 Ui
mem1.chtc.wisc.edu x64/SL6 24 80 1009.67 8 0.17 0.60 **

 Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

 x64/SL6 10416 0 9984 427 0 0 0 5
 x64/WinVista 2 2 0 0 0 0 0 0

 Total 10418 2 9984 427 0 0 0 5

•  To summarize, use the “-compact” option
 condor_status -compact

HTCondor Week 2017 51

(60 SECOND) PAUSE
Questions so far?

HTCondor Week 2017 52

Submitting Multiple Jobs�
with HTCondor

HTCondor Week 2017 53

Many Jobs, One Submit File

•  HTCondor has built-in ways to submit
multiple independent jobs with one submit
file

HTCondor Week 2017 54

Advantages

•  Run many independent jobs...
– analyze multiple data files
–  test parameter or input combinations
– and more!

•  ...without having to:
– start each job individually
– create separate submit files for each job

HTCondor Week 2017 55

Multiple, Numbered, Input Files

•  Goal: create 3 jobs that each analyze a
different input file.

executable = analyze.exe
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue

job.submit

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

HTCondor Week 2017 56

Multiple Jobs, No Variation

•  This file generates 3 jobs, but doesn’t use
multiple inputs and will overwrite outputs

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/
executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file.in

log = job.log
output = job.out
error = job.err

queue 3

job.submit

HTCondor Week 2017 57

Automatic Variables

•  Each job’s
ClusterId and
ProcId numbers
are saved as job
attributes

•  They can be
accessed inside
the submit file
using:
–  $(ClusterId)
–  $(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...

128 N-1

...

HTCondor Week 2017 58

executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file0.in

log = job.log
output = job.out
error = job.err

queue

job.submit

Job Variation

•  How to uniquely identify each job
(filenames, log/out/err names)?

analyze.exe
file0.in
file1.in
file2.in

job.submit

(submit_dir)/

HTCondor Week 2017 59

Using $(ProcId)

•  Use the $(ClusterId), $(ProcId)
variables to provide unique values to jobs.*

executable = analyze.exe
arguments = file$(ProcId).in file$(ProcId).out
should_transfer_files = YES
transfer_input_files = file$(ProcId).in
when_to_transfer_output = ON_EXIT

log = job_$(ClusterId).log
output = job_$(ClusterId)_$(ProcId).out
error = job_$(ClusterId)_$(ProcId).err

queue 3

job.submit

* May also see $(Cluster), $(Process) in documentation

HTCondor Week 2017 60

Organizing Jobs
12181445_0.err 16058473_0.err 17381628_0.err 18159900_0.err 5175744_0.err 7266263_0.err
12181445_0.log 16058473_0.log 17381628_0.log 18159900_0.log 5175744_0.log 7266263_0.log
12181445_0.out 16058473_0.out 17381628_0.out 18159900_0.out 5175744_0.out 7266263_0.out
13609567_0.err 16060330_0.err 17381640_0.err 3446080_0.err 5176204_0.err 7266267_0.err
13609567_0.log 16060330_0.log 17381640_0.log 3446080_0.log 5176204_0.log 7266267_0.log
13609567_0.out 16060330_0.out 17381640_0.out 3446080_0.out 5176204_0.out 7266267_0.out
13612268_0.err 16254074_0.err 17381665_0.err 3446306_0.err 5295132_0.err 7937420_0.err
13612268_0.log 16254074_0.log 17381665_0.log 3446306_0.log 5295132_0.log 7937420_0.log
13612268_0.out 16254074_0.out 17381665_0.out 3446306_0.out 5295132_0.out 7937420_0.out
13630381_0.err 17134215_0.err 17381676_0.err 4347054_0.err 5318339_0.err 8779997_0.err
13630381_0.log 17134215_0.log 17381676_0.log 4347054_0.log 5318339_0.log 8779997_0.log
13630381_0.out 17134215_0.out 17381676_0.out 4347054_0.out 5318339_0.out 8779997_0.out

HTCondor Week 2017 61

Shared Files

•  HTCondor can transfer an entire directory
or all the contents of a directory
–  transfer whole directory

–  transfer contents only

•  Useful for jobs with many shared files;
transfer a directory of files instead of listing
files individually

transfer_input_files = shared/

transfer_input_files = shared
job.submit
shared/
 reference.db
 parse.py
 analyze.py
 cleanup.py
 links.config

(submit_dir)/

HTCondor Week 2017 62

Organize Files in Sub-Directories

•  Create sub-directories* and use paths in
the submit file to separate input, error, log,
and output files.

input

output
error

log

*	 must	 be	 created	 before	 the	 job	 is	 submi4ed	

HTCondor Week 2017 63

Use Paths for File Type

executable = analyze.exe
arguments = file$(Process).in file$(ProcId).out
transfer_input_files = input/file$(ProcId).in

log = log/job$(ProcId).log
error = err/job$(ProcId).err

queue 3

job.submit
analyze.exe

input/
 file0.in
 file1.in
 file2.in	

log/
 job0.log
 job1.log
 job2.log	

err/
 job0.err
 job1.err
 job2.err	

file0.out
file1.out
file2.out	

job.submit

(submit_dir)/

HTCondor Week 2017 64

InitialDir

•  Change the submission directory for each
job using initialdir

•  Allows the user to organize job files into
separate directories.

•  Use the same name for all input/output files
•  Useful for jobs with lots of output files

job0	 job1	 job2	 job3	 job4	

HTCondor Week 2017 65

Separate Jobs with InitialDir

executable = analyze.exe
initialdir = job$(ProcId)
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err

queue 3

job.submit
analyze.exe

job0/
 file.in
 job.log
 job.err
 file.out	

job1/
 file.in
 job.log
 job.err
 file.out	

job2/
 file.in
 job.log
 job.err
 file.out	

job.submit

(submit_dir)/

Executable should be
in the directory with
the submit file, *not*
in the individual job

directories

HTCondor Week 2017 66

Other Submission Methods

•  What if your input files/directories aren’t
numbered from 0 - (N-1)?

•  There are other ways to submit many jobs!

HTCondor Week 2017 67

Submitting Multiple Jobs

Replacing
single job
inputs

with a
variable of
choice

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

executable = compare_states
arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...

HTCondor Week 2017 68

multiple
“queue”
statements

matching ...
pattern

in ... list

from ... file

Possible Queue Statements
infile = wi.dat
queue 1
infile = ca.dat
queue 1
infile = ia.dat
queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat
ca.dat
ia.dat

state_list.txt

HTCondor Week 2017 69

multiple
“queue”
statements

matching ...
pattern

in ... list

from ... file

Possible Queue Statements
infile = wi.dat
queue 1
infile = ca.dat
queue 1
infile = ia.dat
queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat
ca.dat
ia.dat

Not	 Recommended	

state_list.txt

HTCondor Week 2017 70

multiple
queue
statements

Not recommended. Can be useful when submitting job batches
where a single (non-file/argument) characteristic is changing

matching ..
pattern

Natural nested looping, minimal programming, use optional
“files” and “dirs” keywords to only match files or directories
Requires good naming conventions,

in .. list Supports multiple variables, all information contained in a single
file, reproducible
Harder to automate submit file creation

from .. file Supports multiple variables, highly modular (easy to use one
submit file for many job batches), reproducible
Additional file needed

Queue Statement Comparison

HTCondor Week 2017 71

Using Multiple Variables

•  Both the “from” and “in” syntax support
using multiple variables from a list.

executable = compare_states
arguments = -y $(option) -i $(file)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = $(file)

queue file,option from job_list.txt

wi.dat, 2010
wi.dat, 2015
ca.dat, 2010
ca.dat, 2015
ia.dat, 2010
ia.dat, 2015

job.submit job_list.txt

HTCondor	 Manual:	 submit	 file	 opEons	

HTCondor Week 2017 72

Other Features

•  Match only files or directories:

•  Submit multiple jobs with same input data

– Use other automatic variables: $(Step)

queue input matching files *.dat

queue directory matching dirs job*

queue 10 input matching files *.dat

arguments = -i $(input) -rep $(Step)
queue 10 input matching files *.dat

HTCondor Week 2017 73

Testing and Troubleshooting

HTCondor Week 2017 74

What Can Go Wrong?

•  Jobs can go wrong “internally”:
– something happens after the executable

begins to run
•  Jobs can go wrong from HTCondor’s

perspective:
– A job can’t be started at all,
– Uses too much memory,
– Has a badly formatted executable,
– And more...

HTCondor Week 2017 75

Reviewing Failed Jobs
•  A job’s log, output and error files can provide

valuable information for troubleshooting

Log Output Error

•  When jobs were
submitted,
started, and
stopped

•  Resources used
•  Exit status
•  Where job ran
•  Interruption

reasons

Any “print” or
“display” information
from your program

Captured by the
operating system

HTCondor Week 2017 76

Reviewing Jobs

•  To review a large group of jobs at once,
use condor_history

 As condor_q is to the present, condor_history is to the past

$ condor_history alice
 ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD
189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice
189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice
189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice
189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice
189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice
189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice
189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice
189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice
189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice
189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice
189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

HTCondor Week 2017 77

“Live” Troubleshooting

•  To log in to a job where it is running, use:
condor_ssh_to_job JobId

$ condor_ssh_to_job 128.0
Welcome to slot1_31@e395.chtc.wisc.edu!
Your condor job is running with pid(s) 3954839.

HTCondor Manual: condor_ssh_to_job

HTCondor Week 2017 78

Held Jobs

•  HTCondor will put your job on hold if there’s
something YOU need to fix.

•  A job that goes on hold is interrupted (all
 progress is lost) and kept from running
 again, but remains
 in the queue in the
 “H” state.

HTCondor Week 2017 79

Diagnosing Holds

•  If HTCondor puts a job on hold, it provides
a hold reason, which can be viewed with:

 condor_q -hold -af HoldReason

$ condor_q -hold -af HoldReason
Error from slot1_1@wid-003.chtc.wisc.edu: Job has gone over
 memory limit of 2048 megabytes.
Error from slot1_20@e098.chtc.wisc.edu: SHADOW at
 128.104.101.92 failed to send file(s) to <128.104.101.98:35110>: error
 reading from /home/alice/script.py: (errno 2) No such file or directory;
 STARTER failed to receive file(s) from <128.104.101.92:9618>
Error from slot1_11@e138.chtc.wisc.edu: STARTER
 at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>; SHADOW at
 128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:
 (errno 122) Disk quota exceeded
Error from slot1_38@e270.chtc.wisc.edu: Failed
 to execute '/var/lib/condor/execute/slot1/dir_2471876/condor_exec.exe' with
 arguments 2: (errno=2: 'No such file or directory')

HTCondor Week 2017 80

Common Hold Reasons

•  Job has used more memory than
requested

•  Incorrect path to files that need to be
transferred

•  Badly formatted bash scripts (have
Windows instead of Unix line endings)

•  Submit directory is over quota
•  The admin has put your job on hold

HTCondor Week 2017 81

Fixing Holds

•  Job attributes can be edited while jobs are
in the queue using:

 condor_qedit [U/C/J] Attribute Value

•  If a job has been fixed and can run again,
release it with:

 condor_release [U/C/J]

$ condor_qedit 128.0 RequestMemory 3072
Set attribute ”RequestMemory".

$ condor_release 128.0
Job 18933774.0 released

HTCondor Manual: condor_qedit
HTCondor Manual: condor_release

HTCondor Week 2017 82

Holding or Removing Jobs

•  If you know your job has a problem and it
hasn’t yet completed, you can:
–  Place it on hold yourself, with condor_hold [U/C/J]

–  Remove it from the queue, using condor_rm [U/C/J]

$ condor_hold bob
All jobs of user ”bob" have been held

$ condor_hold 128.0
Job 128.0 held

$ condor_hold 128
All jobs in cluster 128 have been held

HTCondor Manual: condor_hold
HTCondor Manual: condor_rm

HTCondor Week 2017 83

Job States, Revisited

Idle
(I)

Running
(R)

Completed
(C)

condor_
submit

in the queue leaving the queue

HTCondor Week 2017 84

Job States, Revisited

Idle
(I)

Running
(R)

Completed
(C)

condor_
submit

Held
(H)

condor_hold, or
HTCondor puts
a job on hold condor_release

in the queue leaving the queue

HTCondor Week 2017 85

Job States, Revisited*

Idle
(I)

Running
(R)

Completed
(C)

condor_
submit

Held
(H)

Removed
(X)

condor_rm

condor_hold,
or job error

condor_release

in the queue leaving the queue

*not	 comprehensive	

HTCondor Week 2017 86

Use Cases and �
HTCondor Features

HTCondor Week 2017 87

Interactive Jobs
•  An interactive job proceeds like a normal

batch job, but opens a bash session into the
job’s execution directory instead of running
an executable.
condor_submit -i submit_file

•  Useful for testing and troubleshooting

$ condor_submit -i interactive.submit
Submitting job(s).
1 job(s) submitted to cluster 18980881.
Waiting for job to start...
Welcome to slot1_9@e184.chtc.wisc.edu!

HTCondor Week 2017 88

Output Handling

•  Only transfer back specific files from the
job’s execution using transfer_ouput_files

 condor_exec.exe
 results-tmp-01.dat
 results-tmp-02.dat
 results-tmp-03.dat
 results-tmp-04.dat
 results-tmp-05.dat
 results-final.dat

transfer_output_files = results-final.dat

(submit_dir)/ (execute_dir)/

HTCondor Week 2017 89

Self-Checkpointing

•  By default, a job that is interrupted will
start from the beginning if it is restarted.

•  It is possible to implement self-
checkpointing, which will allow a job to
restart from a saved state if interrupted.

•  Self-checkpointing is useful for very long
jobs, and being able to run on
opportunistic resources.

HTCondor Week 2017 90

Self-Checkpointing How-To

•  Edit executable:
– Save intermediate states to a checkpoint file
– Always check for a checkpoint file when starting

•  Add HTCondor option that a) saves all
intermediate/output files from the interrupted
job and b) transfers them to the job when
HTCondor runs it again

when_to_transfer_output = ON_EXIT_OR_EVICT

HTCondor Week 2017 91

Job Universes

•  HTCondor has different “universes” for
running specialized job types

 HTCondor Manual: Choosing an HTCondor Universe
•  Vanilla (default)

– good for most software
HTCondor Manual: Vanilla Universe

•  Set in the submit
 file using:

universe = vanilla

HTCondor Week 2017 92

Other Universes

•  Standard
– Built for code (C, fortran) that can be

statically compiled with condor_compile
HTCondor Manual: Standard Universe

•  Java
– Built-in Java support
HTCondor Manual: Java Applications

•  Local
– Run jobs on the submit node
HTCondor Manual: Local Universe

HTCondor Week 2017 93

Other Universes (cont.)

•  Docker
– Run jobs inside a Docker container
 HTCondor Manual: Docker Universe Applications

•  VM
– Run jobs inside a virtual machine
HTCondor Manual: Virtual Machine Applications

•  Parallel
– Used for coordinating jobs across multiple

servers (e.g. MPI code)
– Not necessary for single server multi-core jobs
HTCondor Manual: Parallel Applications

HTCondor Week 2017 94

Multi-CPU and GPU Computing

•  Jobs that use multiple cores on a single
computer can be run in the vanilla universe
(parallel universe not needed):

•  If there are computers with GPUs, request
them with:

request_cpus = 16

request_gpus = 1

HTCondor Week 2017 95

Automation

HTCondor Week 2017 96

Automation

•  After job submission, HTCondor manages
jobs based on its configuration

•  You can use options that will customize
job management even further

•  These options can
 automate when
 jobs are started,
 stopped, and removed.

HTCondor Week 2017 97

Retries

•  Problem: a small number of jobs fail with a
known error code; if they run again, they
complete successfully.

•  Solution: If the job exits with the error
code, leave it in the queue to run again.
This is done via the automatic option
max_retries.

max_retries = 5

HTCondor Week 2017 98

Automatically Hold Jobs

•  Problem: Your job should run in 2 hours or
less, but a few jobs “hang” randomly and
run for days

•  Solution: Put jobs on hold if they run for
over 2 hours, using a periodic_hold
statement

periodic_hold = (JobStatus == 2) &&
((CurrentTime - EnteredCurrentStatus) > (60 * 60 * 2))

job is running

2 hours How long the job has been
running, in seconds

HTCondor Week 2017 99

Automatically Release Jobs

•  Problem (related to previous): A few jobs
are being held for running long; they will
complete if they run again.

•  Solution: automatically release those held
jobs with a periodic_release option,
up to 5 times

periodic_release = (JobStatus == 5) &&
 (HoldReason == 3) && (NumJobStarts < 5)

job is held

job was put on hold
by periodic_hold

job has started running
less than 5 times

HTCondor Week 2017 100

Automatically Remove Jobs

•  Problem: Jobs are repetitively failing
•  Solution: Remove jobs from the queue

using a periodic_remove statement

periodic_remove = (NumJobsStarts > 5)

job has started running
more than 5 times

HTCondor Week 2017 101

Relevant Job Attributes
•  CurrentTime: current time
•  EnteredCurrentStatus: time of last status

change
•  ExitCode: the exit code from the job
•  HoldReasonCode: number corresponding to a

hold reason
•  NumJobStarts: how many times the job has

gone from idle to running
•  JobStatus: number indicating idle, running, held,

etc.
•  MemoryUsage: how much memory the job has

used

HTCondor Manual: Appendix A: JobStatus and HoldReason Codes

HTCondor Week 2017 102

Workflows

•  Problem: Want to submit
jobs in a particular order,
with dependencies
between groups of jobs

•  Solution: Write a DAG

•  To learn about this, attend the next talk,
DAGMan: HTCondor and Workflows by
Lauren Michael at 10:45 today (May 2).

split	

1	 2	 3	 N	

combine	

...	

download	

HTCondor Week 2017 103

FINAL QUESTIONS?

