
CHTC Policy and

Configuration

Greg Thain

HTCondor Week 2017

Image credit: flickr user shanelin cc

Image credit: wikipedia

CHTC Pool Mission

4

“To improve computational research on

campus by providing access to high

throughput computing to a large number of

users”

CHTC Pool Mission

5

› Why?

Minimize badput

Prevent one user from monopolizing pool

Encourage use of shared resources like OSG

› Currently choose 72 hour max runtime

One consequence: Max Runtime

CHTC Pool

CHTC submit machines

Foreign submit machines

jobs

CHTC execute machines

foreign execute machines

(flocking, OSG glidein, etc.)

CHTC Pool

CHTC submit machines

Foreign submit machines

jobs

CHTC execute machines

foreign execute machines

(flocking, OSG glidein, etc.)

Want max job runtime

policy changes in our

startds, foreign startds may

have other policy

› Should condor preempt job at 72 hours…

Even if no other job is runnable ???

Policy Question

9

› “Jobs should be evicted after 72 hours of

runtime”

Policy

WANT_HOLD = \

TotalJobRunTime > (72 * 3600)

WANT_HOLD_REASON = \

"Job failed to run in 72 hrs"

Not quite right…

Only care about execution attempt:

What about self checkpointing job?

›+Is_Resumable = true

› Should this be 1st class in condor?

How to identify checkpointable

jobs?

WANT_HOLD = Is_Resumable =?= true &&

TotalJobRunTime > (72 * 3600)

WANT_HOLD_REASON = \

"Job failed to run in 72 hrs"

› More we know about a job, better we do

Even a little bit a knowledge – not full runtime

guess

Used for backfilling clusters

Running in other specialized environments.

Is_Resumable has more uses

› Be very careful with policy statements

› We need users to tell us more about jobs

› “Specific is Terrific”!

Moral of this story

CHTC Pool

CHTC submit machines

Foreign submit machines

jobs

CHTC execute machines

foreign execute machines

(flocking, OSG glidein, etc.)

› Want to have many places to run

› But we don’t control foreign machines:

Operating System, policies, preinstalled

software

Leads to user surprises

Consequence

› Jobs only run “at home” by default, can opt

into foreign resources

Two levels:
On campus foreign pools

OSG Pool (really foreign)

Policy

CHTC Pool

CHTC submit machines

Foreign submit machines

jobs

CHTC execute machines

foreign execute machines

(flocking, OSG glidein, etc.)

Policy must be at schedds,

with id help from startds

PoolName = “CHTC”

Site = “ServerRoomNumber”

STARTD_ATTRS = PoolName, Site

STARTD_ATTRS

…

Site = “ServerRoomNumber”

Pool = “CHTC”

…

condor_status output

condor_status –af Site PoolName

› Jobs choose based on attribute of machine

› NOT on a-priori knowledge

Machine name, etc.

› Machines publish info about themselves

Digression: good condor style

› Our local machines have CVMFS, others

don’t. If a job needs CVMS, how should it

indicate this?

Example: CVMFS

Requirements = PoolName == “CHTC”

Wrong way

STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) CVMFS

STARTD_CRON_CVMFS_EXECUTABLE = /path/to/check_cvmfs

STARTD_CRON_CVMFS_PERIOD = 10m

STARTD_CRON_CVMFS_MODE = periodic

Right way – startd cron

Check_cvmfs is a script which emits

HasCVMFS = true (or not)

…

HasCVMFS = true

…

condor_status output

condor_status –af HasCVMFS

› Want jobs to only travel if they opt in

› By providing default schedd requirements

End of digression, back to

flocking

APPEND_REQ_VANILLA =

MY.WantFlocking || TARGET.PoolName =?= "CHTC"

APPEND_REQUIREMENTS

My.WantFlocking comes from job ad

Trivia: What if not defined?

REQUIREMENTS = (USER STUFF) &&

MY.WantFlocking || TARGET.PoolName =?= "CHTC"

› With partitionable slots, and mixed size

jobs, can have job starvation

› Problem: can take long time to fully defrag

machine

Policy: defragmenting

partitionable slots

DEFRAG_REQUIREMENTS = PartitionableSlot \

&& State =!= "Owner" && TotalCpus > 39

DEFRAG_WHOLE_MACHINE_EXPR = PartitionableSlot && \TotalCpus

> 39 && (State =!= "Owner") && \

((cpus / TotalCpus) >= 0.8)

Defrag policy

Only defrag down to 80%

› May wait a long time to defrag a machine

› But then a high prio serial job comes along…

› Negotiation hard coded to match in prio order

Problem: high prio job goes first

START = $(START) && \

RequestCpus >= IfThenElse(Cpus < 4,1,4) || \

(time() - EnteredCurrentState) > 20 * 60)

Solution: delayed start

After defrag, only start big jobs for a few

minutes

Summary

Condor has all kinds of assembly language

for policy, but we need to spend more time

thinking about what the actual, english-

language policy we want is.

