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“To improve computational research on 

campus by providing access to high 

throughput computing to a large number of 

users”

CHTC Pool Mission
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› Why?

Minimize badput

Prevent one user from monopolizing pool

Encourage use of shared resources like OSG

› Currently choose 72 hour max runtime

One consequence: Max Runtime
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Want max job runtime 

policy changes in our 

startds, foreign startds may 

have other policy



› Should condor preempt job at 72 hours…

Even if no other job is runnable ??? 

Policy Question
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› “Jobs should be evicted after 72 hours of 

runtime”

Policy



WANT_HOLD = \

TotalJobRunTime >  ( 72 * 3600)

WANT_HOLD_REASON = \

"Job failed to run in 72 hrs"



Not quite right…

Only care about execution attempt:

What about self checkpointing job? 



›+Is_Resumable = true

› Should this be 1st class in condor?

How to identify checkpointable

jobs?



WANT_HOLD = Is_Resumable =?= true &&

TotalJobRunTime >  ( 72 * 3600)

WANT_HOLD_REASON = \

"Job failed to run in 72 hrs"



› More we know about a job, better we do

Even a little bit a knowledge – not full runtime 

guess

Used for backfilling clusters

Running in other specialized environments.

Is_Resumable has more uses



› Be very careful with policy statements

› We need users to tell us more about jobs

› “Specific is Terrific”!

Moral of this story
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› Want to have many places to run

› But we don’t control foreign machines:

Operating System, policies, preinstalled 

software

Leads to user surprises

Consequence



› Jobs only run “at home” by default, can opt 

into foreign resources

Two levels:
On campus foreign pools

OSG Pool (really foreign)

Policy
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Policy must be at schedds, 

with id help from startds



PoolName = “CHTC”

Site = “ServerRoomNumber”

STARTD_ATTRS = PoolName, Site

STARTD_ATTRS



…

Site = “ServerRoomNumber”

Pool = “CHTC”

…

condor_status output

condor_status –af Site PoolName



› Jobs choose based on attribute of machine

› NOT on a-priori knowledge

Machine name, etc.

› Machines publish info about themselves

Digression: good condor style



› Our local machines have CVMFS, others 

don’t.  If a job needs CVMS, how should it 

indicate this?

Example: CVMFS



Requirements = PoolName == “CHTC”

Wrong way



STARTD_CRON_JOBLIST  = $(STARTD_CRON_JOBLIST) CVMFS

STARTD_CRON_CVMFS_EXECUTABLE  = /path/to/check_cvmfs

STARTD_CRON_CVMFS_PERIOD                 = 10m

STARTD_CRON_CVMFS_MODE                   = periodic

Right way – startd cron

Check_cvmfs is a script which emits

HasCVMFS = true (or not)



…

HasCVMFS = true

…

condor_status output

condor_status –af HasCVMFS



› Want jobs to only travel if they opt in

› By providing default schedd requirements

End of digression, back to 

flocking



APPEND_REQ_VANILLA = 

MY.WantFlocking || TARGET.PoolName =?= "CHTC"

APPEND_REQUIREMENTS

My.WantFlocking comes from job ad

Trivia:  What if not defined?

REQUIREMENTS = (USER STUFF) && 

MY.WantFlocking || TARGET.PoolName =?= "CHTC"



› With partitionable slots, and mixed size 

jobs, can have job starvation

› Problem: can take long time to fully defrag 

machine

Policy: defragmenting 

partitionable slots



DEFRAG_REQUIREMENTS = PartitionableSlot \

&& State =!= "Owner" && TotalCpus > 39

DEFRAG_WHOLE_MACHINE_EXPR = PartitionableSlot && \TotalCpus

> 39 && ( State =!= "Owner" ) && \

( ( cpus / TotalCpus ) >= 0.8)

Defrag policy

Only defrag down to 80%



› May wait a long time to defrag a machine

› But then a high prio serial job comes along…

› Negotiation hard coded to match in prio order

Problem: high prio job goes first



START = $(START) && \

RequestCpus >= IfThenElse(Cpus < 4,1,4) || \

(time() - EnteredCurrentState) > 20 * 60) 

Solution:  delayed start

After defrag, only start big jobs for a few 

minutes



Summary 

Condor has all kinds of assembly language 

for policy, but we need to spend more time 

thinking about what the actual, english-

language policy we want is.


