High-Throughput Machine Learning from EHR Data

David Page

Department of Biostatistics & Medical Informatics, and Center for Predictive Computational Phenotyping (CPCP) University of Wisconsin-Madison

Acknowledgements

NIH BD2K Center for Predictive Computational Phenotyping Ross Kleiman Paul Bennett CPCP Michael Caldwell Scott Hebbring Marshfield Clinic **Miron Livny Peggy Peissig** Vitor Santos Costa National Institutes of Health Turning Discovery Into Health Humberto Vidaillet Wisconsin Genomics Initiative

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The Electronic Health Record (EHR)

Demographics

ID	Year of Birth	Gender
P1	3.22.1963	М

Diagnoses

ID	Date	Diagnosis	Sign/Sympto m
P1	6.2.1990	427.69 (PVC)	Palpitations

The Electronic Health Record (EHR)

Demographics

ID	Year of Birth	Gender
P1	3.22.1963	М

Diagnoses

ID	Date	Diagnosis	Sign/Sympto m		
P1	7.3.1997	Elevated BP			

The Electronic Health Record (EHR)

Demographics

ID	Year of Birth	Gender
P1	3.22.1963	М

Diagnoses

L.				
	ID	Date	Diagnosis	Sign/Sympto m
	- P1	9.1.1998	Atrial Fibrillation	Shortness of Breath

Wisconsin Genomics Initiative (WGI)

Marshfield Clinic EMR

Marshfield Clinic

- -Health system in North Central Wisconsin
- 1.5M Patient Records spanning 40 years
 - Demographics
 - -Diagnoses (ICD-9)
 - –Labs
 - -Procedures
 - -Vitals

Electronic Health Record (EHR)

PatientID	Gender	Birthdate	PatientID	Date	Physician	Symptoms	Diagnosis
P1	М	3/22/63	P1 P1	1/1/01 2/1/03	Smith Jones	palpitations fever, aches	hypoglycemic influenza

PatientID	Date	Lab Test	Result	PatientID	SNP1	SNP2	 SNP500K
P1 P1	1/1/01 1/9/01	blood glucose blood glucose	42 45	P1 P2	AA AB	AB BB	BB AA

PatientID	Date Prescribed	Date Filled	Physician	Medication	Dose	Duration
P1	5/17/98 5/18/98		Jones	prilosec	10mg	3 months

- Build predictive models for every diagnosis, every procedure, response to every drug, at press of a button.
- Translate the most accurate models into the clinic, whether as decision support algorithms or lessons for clinicians, FDA, etc.

- Originally 1.5M patients
- Remove Infrequent Patients
 - -4 diagnoses and 2 encounters
- 1.1M patients remained (~73%)

Case Control Matching

Model Construction and Evaluation

- Model nearly every ICD-9 code
 - -At least 500 pairs
 - -Exclude symptoms
- Build random forest model
- Evaluate models via AUC-ROC

Predictive Accuracy of Models

High-Throughput ML (Kleiman, Bennett, et al.)

Predicting Every ICD Diagnosis Code at the Press of a Button

- How well would these models perform in practice?
- Evaluate model accuracy on 10,000 test patients

Simulated Prospective Study Results

HTCondor Essential to this Work and Future Work

- Over 1M patients
- Over 4000 different diagnoses (models)
- 750 trees per model
- Producing slide 14 took 30K jobs and roughly 123 years of compute time
- In future, predict all drugs, procedures, and responses
- In future, predict on 100M or 1B patients
- In future, add genomics (3B bp per patient)
- In future, add tumor genomes (1000 genomes per tumor)
- High-throughput ML applicable to many other domains
- High-throughput computing applicable to many other tasks in NIH Big Data to Knowledge Program