
Load balancing while solving large
linear integer problems for

enumeration purposes

José Núñez Ares
Jeff Linderoth

introduction

disciplines:

experimental design (statistics)

integer programming (mathematical programming)

high-throughput computing

goal:

complete enumeration of MARS designs

what is a MARS design?

top of one of the buttes in Murray Buttes. Image processing by Paul Hammond.
Photo Credit: NASA/JPL-Caltech/MSSS/Paul Hammond

what is a MARS design?

 minimally
 aliased
 response

 surface
 designs

what is a MARS design?

desirable statistical properties

m factors

 n
runs

FUNDAMENTAL IN RESPONSE SURFACE METHODOLOGY

why is this important?

there is a small set of MARS designs and they have
became standard in response surface methodology

designs with less runs which give the same amount of
information of bigger ones

designs which perform well under conflicting criteria

how do we find them?

enumeration tree exploration

what are the problems?

MARS designs have
huge isomorphic groups

mathematical programming
techniques help with this

Andy Warhol's Marilyn Monroe Series, 1967

what are the problems?
tree of exponential size

what does the enumeration tree look like?

skinny

deep

what does the enumeration tree look like?

skinny

deep

what does the enumeration tree look like?

skinny

deep

what does the enumeration tree look like?

why htcondor?

unknown number of processed nodes (potentially
huge)

long processing time

“pleasantly parallel”, little communication and
synchronization needed

our load balancing scheme

element 2: breadth-first-search (BFS)
until a certain depth determined
dynamically by a max processing time
OR a max number of open nodes

element 1: Knuth estimation
done ntimes, if predicted size > threshold
then we do BFS, otherwise DFS

our load balancing scheme

element 4: trimming
after BFS and DFS (if not solved)
we solve every open node if the
solution time < max processing
time of a trivial node, otherwise we
store the open node data

element 3: depth-first-search (DFS)
faster and more memory efficient
than BFS, creates less open nodes
while evaluating more nodes, max
processing time

our load balancing scheme

Knuth dives from root node

this is diving 1...

with predicted size < threshold

our load balancing scheme

Knuth dives from root node

this is diving 2...

with predicted size < threshold

our load balancing scheme

Knuth dives from root node

this is diving 3...

with predicted size > threshold

our load balancing scheme

we then do BFS from root node

dynamical depth, which depends
on time/number of open nodes

our load balancing scheme

now we repeat the process for
each one of the open nodes …

let's do some Knuth dives ...

our load balancing scheme

this time

predicted size < threshold

do DFS from this node

our load balancing scheme

this time

predicted size < threshold

do DFS from this node

our load balancing scheme

we repeat the process on the

open nodes

HTCondor DAGMan files

marsd.dag

workers.dag

SUBDAG EXTERNAL workers workers.dag
SCRIPT POST workers marsdOneIter.sh 7
RETRY workers 1000

JOB main submit-solve.cmd

input data: 30-36MB

output data < 1MB

executables

identifies the open nodes
writes the htcondor submit file
dinamically tune the parameters

marsdOneIter.sh

marsd

does the load balance

achievements

size 6 7 8

#nodes 2,276 x 106 704 x 106 166 x 106

CPU time
(years)

3.32 5.57 20.52

#solutions 296,193 20,184 521

acknowledgement

Peter Goos, my promotor at KU Leuven

fonds wetenschappelijk onderzoek, grant V402917N

thank you!

any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29

