Load balancing while solving large
linear integer problems for
enumeration purposes

José Nunez Ares
Jeff Linderoth

Introduction

disciplines:

experimental design (statistics)
Integer programming (mathematical programming)
high-throughput computing

goal:
complete enumeration of MARS designs

what is a MARS design?

top of one of the buttes in Murray Buttes. Image processing by Paul Hammond.
Photo Credit: NASA/JPL-Caltech/MSSS/Paul Hammond

what is a MARS design?

> (D)
— S
coc 2
cE o8 5
=n ol.2
C O n - U
m”eue
C = 0N O
- N
—_— —~ — - O - O - - - O —
| | _
. | |
| | |
- o v e e D D o (D o =
| | |
—_ O — o~ — O O e D ™ o
| | | _
= - O — O O —~ O — A —
_ .
— 0 — o O =~ D = = — O
|
S -

what is a MARS design?

mxn {—1,0,1} matriz
11 =1 0\

(1 0

0
1 0 0 -1 -1 —1 .
Fy Un 0 1 0 0 1 —1 i) columns sum up to zero
DA]ME‘ 0 0 0 1
N 0 10 0 i1) columns are orthogonal
. L ING
0 1 -1 R%-SRQ
n 00 1 -1 -l ON o piit) component-wise multiplication
SE
s -1 0 0 1 -1 1

0
o -1 0 0 1 | 1
1

Suﬁ%olumns produce a
1 0 -1 0 0 -1
1 -1 0 -1 0 0 -1 column that s[[flﬂ@éz Zero

I -1 -1 0 —1 0 0

0 -1 1 1 0 -1 0 desirable statistical propertles
\ 0 0 -1 1 1 0 —1

m factors

why Is this important?

there Is a small set of MARS designs and they have
became standard in response surface methodology

designs with less runs which give the same amount of
iInformation of bigger ones

designs which perform well under conflicting criteria

how do we find them?

Z i =i

peQ
E yP = nME
PELo;
d P =ng®
PEQij
E r:sijp = ()
peEQ
P P _

E :aijky =
peQ
g e (0,1}

L=< m

L 3l 300

1< 3w

1l<g<qgd<k<m

p €)

Q =3"-1

S C Q := basic design

G = group of permutations of levels and factors
G =2""m!

iteratively add isomorphism inequalities:

Z yP <n-—-1,Vge G

pcg(s)

enumeration tree exploration

what are the problems?

MARS designs have
huge iIsomorphic groups

mathematical programming
techniques help with this

Andy Warhol's Marilyn Monroe Series, 1967

what are the problems?

Z i =i

peQ
E yP = nME
peflpg
d P =ng®
PEQij
I
E QY- = 0
peN
= L -
E :aijky =
peQ

g e (0,1}

L=< m

el goe g

L= g4 5<9p

1l<g<qgd<k<m

p €)

tree of exponential size

S C) := basic design
G = group of permutations of levels and factors

G =2""m!

iteratively add isomorphism inequalities:

Z yP <n-—-1,Vge G

pcg(s)

what does the enumeration tree look like?

B&B tree (4 22 6 10 minind 0s)

0
; B
| 2
9]
10 skinny

depth

= deep

20

25

what does the enumeration tree look like?

B&B tree (tree 5 24 6 10 minind 43s)

||_

e
40 =

60 skinny

80

depth

deep

100
120
140

160

what does the enumeration tree look like?

B&B tree (5 26 8 14 minind 1159s)

¥ f+
L
o[%
aak Bt it ’ E
| SN ;1 ! h!; |ii|‘|.t' 1 | !
50
skinny
-_—
‘g 100
E deep
150
200

what does the enumeration tree look like?

histogram with node depths

1800
Il other feasible
1600 Il other infeasible
[infeasible siblings
1400+ Il feasible on paths to solution []

1200+

1000 +

800 -

600 -

400 -

200

0 50 100 150 200

why htcondor?

unknown number of processed nodes (potentially
huge)

long processing time

“pleasantly parallel”, little communication and
synchronization needed

our load balancing scheme

element 1: Knuth estimation
done ntimes, If predicted size > threshold
then we do BFS, otherwise DFS

element 2: breadth-first-search (BFS)
until a certain depth determined
dynamically by a max processing time

OR a max number of open nodes

our load balancing scheme

element 3: depth-first-search (DFS)
faster and more memory efficient
than BFS, creates less open nodes
while evaluating more nodes, max
processing time

element 4: trimming

after BFS and DFS (if not solved)
we solve every open node If the
solution time < max processing
time of a trivial node, otherwise we
store the open node data

our load balancing scheme

Knuth dives from root node
this is diving 1...

with predicted size < threshold

our load balancing scheme

Knuth dives from root node
this is diving 2...

with predicted size < threshold

our load balancing scheme

Knuth dives from root node
this is diving 3...

with predicted size > threshold

our load balancing scheme

£ % Fi
i LY
! W
A x
\ FIRY

we then do BFS from root node

dynamical depth, which depends
on time/number of open nodes

our load balancing scheme

Ay

now we repeat the process for
each one of the open nodes ...

let's do some Knuth dives ...

our load balancing scheme

AY
A
%
hY

this time
predicted size < threshold

do DFS from this node

our load balancing scheme

this time
predicted size < threshold

do DFS from this node

our load balancing scheme

/>>\ we repeat the process on the

open nodes

HTCondor DAGMan files

marsd.dag

SUBDAG EXTERNAL workers workers.dag
SCRIPT POST workers marsdOnelter.sh 7
RETRY workers 1000

workers.dag

JOB main submit-solve.cmd

iInput data: 30-36MB

output data < 1MB

executables

marsdOnelter.sh

identifies the open nodes
writes the htcondor submit file
dinamically tune the parameters

marsd

does the load balance

achlievements

C&’/U tn; 3.32 20.52

acknowledgement

Peter Goos, my promotor at KU Leuven

fonds wetenschappelijk onderzoek, grant V402917/N

thank you!

any guestions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29

