
HTCondor and Workflows:
Tutorial

HTCondor Week 2016
Kent Wenger

2

What are workflows?

 General: a sequence of connected steps
 Our case:

 Steps are HTCondor jobs (really, submit files)
 Sequence defined at higher level
 Controlled by a Workflow Management System

(WMS), not just a script

Why use workflows?

 Job A must complete successfully before job B starts
 Typically, job A produces output file(s) that are inputs to job B
 Can't do this with a single submit file

A

B

 Dependencies between jobs:

Workflow example with files

Job
A

File 1

Job
B

File 2

File 3

5

Workflows – launch and forget

 Automates tasks user could perform manually (for
example, the previous slide)…
 But Workflow Management System takes care of

automatically
 A workflow can take days, weeks or even months
 The result: one user action can utilize many

resources while maintaining complex job inter-
dependencies and data flows

Workflow management systems
 DAGMan (Directed Acyclic Graph Manager)

 HTCondor's WMS (this talk)
 Pegasus

 A higher level on top of DAGMan
 Data- and grid-aware

 Hands-on tutorial this afternoon (separate
session)

 Talk Friday

Example workflow

...10k...

Preparation

Simulation

Analysis

NOOP?

CleanupFinal

8

DAG (directed acyclic graph)
definitions

 DAGs have one or more
nodes (or vertices)

 Dependencies are
represented by arcs (or
edges). These are arrows
that go from parent to
child)

 No cycles!

A

B C

D

No!

Basic DAG commands

 Job command defines a name, associates that
name with an HTCondor submit file

 The name is used in many other DAG commands
 Required in all DAG files
 “Job” should really be “node”

 Parent...child command creates a dependency
between nodes

 Child cannot run until parent completes
successfully

10

Defining a DAG to DAGMan

A DAG input file defines a DAG:

file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D

11

Jobs/clusters

 Submit description files used in a DAG can
create multiple jobs,
but they must all be in a single cluster.
 A submit file that creates >1 cluster causes
node failure.

 The failure of any job means the entire
cluster fails. Other jobs in the cluster are
removed.

 Don't use large clusters within DAGs.

12

Node success or failure

 A node either succeeds or
fails

 Based on the exit code of
the job(s)

0: success
not 0: failure

 This example: C fails
 Failed nodes block

execution; DAG fails

A

B C

D

PRE/POST scripts – why?

 Set up input
 Check output
 Dynamically create submit file or sub-DAG
(more later)

 Probably lots of other reasons…

 Should be lightweight (run on submit
machine)

13

PRE and POST scripts (cont)
 DAGMan allows optional PRE and/or POST scripts

for any node
 Not necessarily a script: any executable
 Run before (PRE) or after (POST) job

PRE script

HTCondor
job

POST script

A Scripts run on submit machine
(not execute machine)

 In the DAG input file:
 Job A a.submit
 SCRIPT PRE A script_name

arguments
 SCRIPT POST A script_name

arguments

15

DAG node with scripts
 DAGMan treats the node as a

unit (e.g., dependencies are
between nodes)

 PRE script, Job, or POST
script determines node
success or failure (table in
manual gives details)

 If PRE script fails, job and
POST script are not run
(changed as of 8.5.5)

 If job fails, POST is run

PRE script

HTCondor
job

POST script

Node

16

Script argument
variables

 $JOB: node name
 $JOBID: Condor ID (cluster.proc) (POST only)
 $RETRY: current retry
 $MAX_RETRIES: max # of retries
 $RETURN: exit code of HTCondor job (POST only)
 $PRE_SCRIPT_RETURN: PRE script return value (POST

only)
 $DAG_STATUS: A number indicating the state of

DAGMan. See the manual for details.
 $FAILED_COUNT: the number of nodes that have failed

in the DAG

Don't re-do work: PRE_SKIP
 Allows PRE script to immediately declare node successful

(job and POST script are not run)
 In the DAG input file:

JOB A A.cmd

SCRIPT PRE A A.pre

PRE_SKIP node_name non-zero_integer

 If the PRE script of A exits with the specified value, the
node succeeds immediately, and the node job and POST
script are skipped.

 If PRE script succeeds, node job and POST are run.
 If the PRE script fails with a different value, the node job

and POST script are skipped (as if PRE_SKIP were not
specified).

17

18

Submitting a DAG to HTCondor
 To submit an entire DAG, run

condor_submit_dag DagFile

 condor_submit_dag creates a submit
description file for DAGMan, and DAGMan itself is
submitted as an HTCondor job (in the scheduler
universe)

 -f(orce) option forces overwriting of existing files
(to re-run a previously-run DAG)

 Don't try to run duplicate DAG instances!

19

Monitoring running DAGs:
condor_q -dag

 Shows current workflow state
 The -dag option associates DAG node

jobs with the parent DAGMan job
> condor_q -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9618?...

 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD

 767.0 wenger 5/15 10:41 0+00:00:32 R 0 2.2 condor_dagman -

 768.0 |-sub01 5/15 10:41 0+00:00:26 R 0 2.2 condor_dagman -

 771.0 |-nodeS01 5/15 10:41 0+00:00:12 R 0 0.0 sleep 30

 772.0 |-nodeS02 5/15 10:41 0+00:00:12 R 0 0.0 sleep 30

 769.0 |-node01 5/15 10:41 0+00:00:12 R 0 0.0 sleep 30

 770.0 |-node02 5/15 10:41 0+00:00:12 R 0 0.0 sleep 30

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended

Monitoring running DAGS:
condor_q -batch

 A single line of output summarizing all jobs
with the same batch name:

> condor_q -batch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

wenger tmp.dag+779 5/15 10:45 3 2 1 12 784.0 ... 786.0

5 jobs; 0 completed, 0 removed, 1 idle, 4 running, 0 held, 0 suspended

21

Monitoring a DAG:
dagman.out file

 Logs detailed workflow history
 Mostly for debugging – first place to look if

something goes wrong!
DagFile.dagman.out
 Verbosity controlled by the
DAGMAN_VERBOSITY configuration macro and
–debug n on the condor_submit_dag
command line

 0: least verbose
 7: most verbose

 Don’t decrease verbosity unless really necessary

22

Dagman.out contents

...

04/17/11 13:11:26 Submitting Condor Node A job(s)...

04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '='
'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a
+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.

04/17/11 13:11:27 assigned Condor ID (180224.0.0)

04/17/11 13:11:27 Just submitted 1 job this cycle...

04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)

04/17/11 13:11:27 Number of idle job procs: 1

04/17/11 13:11:27 Of 4 nodes total:

04/17/11 13:11:27 Done Pre Queued Post Ready Un-Ready Failed

04/17/11 13:11:27 === === === === === === ===

04/17/11 13:11:27 0 0 1 0 0 3 0

04/17/11 13:11:27 0 job proc(s) currently held

...

This is a small excerpt of the dagman.out file.

Removing a running DAGs:
condor_rm

 condor_rm dagman_id
 Removes entire workflow

 Removes all queued node jobs
 Kills PRE/POST scripts

 Creates rescue DAG (more on this on later)
 Work done by partially-completed node jobs

is lost
• Relatively small jobs are good

Pausing a running DAG:
hold/release

 condor_hold dagman_id
 “Pauses” the DAG

 Queued node jobs continue
 No new node jobs submitted
 No PRE or POST scripts are run

 DAGMan stays in queue if not released

 condor_release dagman_id
 DAGMan “catches up”, starts submitting jobs

Pausing a running DAG: halt file

 “Pauses” the DAG (different semantics than
hold)

 Queued node jobs continue
 POST scripts are run as jobs finish
 No new jobs will be submitted and no PRE

scripts will be run
 When all submitted jobs complete, DAGMan

creates a rescue DAG and exits (if not un-halted)

25

Halting a DAG (cont)
 Create a file named DagFile.halt in the same

directory as your DAG file.
 Remove halt file to resume normal operation
 Should be noticed w/in 5 sec

(DAGMAN_USER_LOG_SCAN_INTERVAL)

 Good if load on submit machine is very high
 Avoids hold/release problem of possible duplicate

PRE/POST script instances

26

Make warnings into errors:
DAGMAN_USE_STRICT

 Warnings are printed to dagman.out file – easy to
ignore

 DAGMAN_USE_STRICT turns warnings into fatal errors
 Example: node category has no assigned nodes

 0: no warnings become errors
 1: severe warnings become errors
 2: medium-severity warnings become errors
 3: almost all warnings become errors
 Default is 1 (a good idea to increase)

28

Handling failures: node
retries

 For possibly transient errors
 Before a node is considered failed. . .

 Retry N times. In the DAG file:
RETRY node_name max_retries

• Example: RETRY C 4
(to retry node C four times before calling the node

failed)
 Retry N times, unless a node returns specific exit

code. In the DAG file:
RETRY node_name max_retries UNLESS-

EXIT exit_code

29

Node retries, continued

 Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value:

node fails

One node failure:
retry

Out of retries:
node fails

Handling failures: script deferral
 Re-try failed script (not entire node) after a

specified deferral time
 Deferred scripts don't count against

maxpre/maxpost
 In the DAG file:

SCRIPT [DEFER status time] PRE|POST
node script_path args...

 If script exits with status, re-try after time (or
more) seconds

 Added in 8.3.5

31

Handling failures: Rescue DAGs
 Save the state of a partially-completed DAG
 Created when a node fails (after maximal

progress) or the condor_dagman job is removed
with condor_rm or when DAG is halted and all
queued node jobs finish or when DAG is aborted
 DAGMan makes as much progress as possible in the

face of failed nodes
 DAGMan immediately exits after writing a rescue

DAG file
 Automatically run when you re-submit the original

DAG (unless –force is passed to
condor_submit_dag)

32

Rescue DAGs (cont)

Run

Not run

A

B1

D

B2 B3

C1 C2 C3

Rescue DAGs (cont)
 The Rescue DAG file, by default, is only a partial

DAG file.
 A partial Rescue DAG file contains only

information about which nodes are done, and the
number of retries remaining for nodes with retries.

 Does not contain information such as the actual
DAG structure and the specification of the submit
file for each node job.

 Partial Rescue DAGs are automatically parsed in
combination with the original DAG file, which
contains information such as the DAG structure.

33

Rescue DAGs (cont)

 If you change something in the original
DAG file, such as changing the submit file
for a node job, that change will take effect
when running a partial rescue DAG.

34

35

Rescue DAG naming

 DagFile.rescue001, DagFile.rescue002,
etc.

 Up to 100 by default (last is overwritten once you
hit the limit)

 Newest (highest number) is run automatically
when you re-submit the original DagFile

 condor_submit_dag -dorescuefrom number to
run specific rescue DAG
 Newer rescue DAGs are renamed

Composing workflows: sub-
DAGs and splices

 Incorporate multiple DAG files into a
single workflow

 Sub-DAGs: separate DAGMan instance
for each component

 Splices: components are directly
incorporated into top-level DAG

Why sub-DAGs?

 Dynamic workflow generation (sub-DAGs
can be created “on the fly”)

 Re-try multiple nodes as a unit
 Short-circuit parts of the workflow (ABORT-
DAG-ON in sub-DAG)

 Scalability (can reduce memory footprint)
 Can have different config settings for

components

37

Why splices?
 Advantages of splices over sub-DAGs:

 Reduced overhead (single DAGMan instance)
 Simplicity (e.g., single rescue DAG)
 Throttles apply across entire workflow
 Unified status for entire workflow (condor_q,

etc.)
 Limitations of splices:

 Splices cannot have PRE and POST scripts
(for now)

 Splices cannot have retries
 Splice DAGs must exist at submit time

39

Sub-DAGs

 Multiple DAG files in a single workflow (runs the
sub-DAG as a job within the top-level DAG)

 In the DAG input file:
SUBDAG EXTERNAL JobName DagFileName

 Any number of levels
 Sub-DAG nodes are like any other (can have

PRE/POST scripts, retries, DIR, etc.)
 Each sub-DAG has its own DAGMan

 Separate throttles for each sub-DAG
 Separate rescue DAGs (run automatically)

40

Splices

 Multiple DAG files in a single workflow
(directly includes splice DAG’s nodes within
the top-level DAG)

 In the DAG input file:
SPLICE JobName DagFileName

 Splices can be nested (and combined with
sub-DAGs)

Splice pin connections

 Ready for beta test (any volunteers?)
 Allows more flexible parent/child

relationships between nodes within splices
 Parsed when DAGMan starts up
 Not for sub-DAGs

Splice pin connections (cont)

Parent/child Pin connection

Splice pin connections (cont)

Pin ins

Pin outs

 Define node/pin connections w/in splices
 Pins are connected one-to-one

Splice pin connections (cont)

 Syntax in upper-level DAG:

SPLICE splice1_name dag_file1

SPLICE splice2_name dag_file2

CONNECT splice1_name splice2_name
 Syntax within splice DAG:

PIN_IN node_name pin_number

PIN_OUT node_name pin_number
 Pin/node connections can be many-to-many
 Pin numbers start at 1
 Pin outs of splice 1 connected to pin ins of splice 2

Include

 Ready for beta test (any volunteers?)
 Directly incorporates the commands of the

specified file
 Parsed when DAGMan starts up
 Syntax:

INCLUDE dag_file
 Can be used to define PIN_IN/PIN_OUT

Identifying your workflow:
batch name

 Propagated to all parts of a workflow (8.5.5)
 JobBatchName attribute in ClassAds

 Defaults to dag_file+cluster if not
specified (8.5.5)

 Groups jobs in condor_q output
 Syntax:

condor_submit_dag -batch-name name
...

New POST script
semantics

 POST script is no longer run if PRE script
fails (as of 8.5.5)

 Get old semantics by setting
DAGMAN_ALWAYS_RUN_POST to True

Set ClassAd attributes in
DAG file

 Sets attribute in DAGMan's own ClassAd
 Syntax:

SET_JOB_ATTR attribute_name =
value

49

Don't overload things:
throttling

 Limit load on submit machine and pool
 Maxjobs N limits jobs in queue
 Maxidle N submit jobs until idle limit is hit

 Can get more idle jobs if jobs are evicted
 Maxpre N limits PRE scripts
 Maxpost N limits POST scripts

 All limits are per DAGMan, not global for the
pool or submit machine (sub-DAGs count
separately)

 Limits can be specified as arguments to
condor_submit_dag or in configuration

50

Throttling (cont)

 Example with per-DAG config file
file name: foo.dag
CONFIG foo.config

file name: foo.config
DAGMAN_MAX_JOBS_SUBMITTED = 100
DAGMAN_MAX_JOBS_IDLE = 5
DAGMAN_MAX_PRE_SCRIPTS = 3
DAGMAN_MAX_POST_SCRIPTS = 15

51

Finer-grained throttling

Setup

Cleanup

Big job

Small jobSmall jobSmall job

Big job

Small jobSmall jobSmall job

Big job

Small jobSmall jobSmall job

52

Node category throttles

Useful with different types of jobs that cause
different loads
In the DAG input file:

CATEGORY JobName CategoryName
MAXJOBS CategoryName MaxJobsValue

Applies the MaxJobsValue setting to only jobs
assigned to the given category
Global throttles still apply

53

Cross-splice node categories

 Prefix category name with “+”
MaxJobs +init 2

Category A +init
 Set MaxJobs in top-level DAG
 Assign nodes to categories within splices
 See the Splice section in the manual for
details

54

Submit file re-use: node
variables

 To re-use submit files for multiple nodes
 In DAG input file:
VARS JobName varname="value"
[varname="value"...]

 In submit description file:
$(varname)

 varname can only contain alphanumeric characters
and underscore

 varname cannot begin with “queue”
 varname is not case-sensitive
 varname beginning with “+” defines ClassAd

attribute (e.g., +State = “Wisconsin”)

Node variables (cont)

 Double quotes in Value must be escaped
 The variable $(JOB)contains the DAG

node name
 $(RETRY) contains retry count
 Any number of VARS values per node
 DAGMan warns (in dagman.out) if a VAR

name is defined more than once for a node

55

Node variables (ex)

foo.dag

Job B10 B.sub

Vars B10 infile=”B_in.10”

Vars B10 +myattr=”4321”

B.sub

input = $(infile)

arguments = $$([myattr])

57

Tuning DAGMan: DAGMan
configuration

 A few dozen DAGMan-specific
configuration macros (see the manual…)

 From lowest to highest precedence
 HTCondor configuration files
 User’s environment variables:

 _CONDOR_macroname
 DAG-specific configuration file (preferable)
 condor_submit_dag command line

(recorded in dagman.out file)

58

Per-DAG configuration

 In DAG input file:
CONFIG ConfigFileName
or command line:
condor_submit_dag –config
ConfigFileName ...

 Generally prefer CONFIG in DAG file over
condor_submit_dag -config or individual
arguments

 Specifying more than one configuration file is
an error.

Per-DAG configuration (cont)

 Configuration entries not related to
DAGMan are ignored

 Syntax like any other HTCondor config file
file name: bar.dag

CONFIG bar.config

file name: bar.config

DAGMAN_ALWAYS_RUN_POST = True

DAGMAN_MAX_SUBMIT_ATTEMPTS = 2

59

60

Optimize your workflow: node
priorities

 In the DAG input file:
PRIORITY JobName PriorityValue

 Determines order of submission of ready
nodes

 DAG node priorities are propagated to job
priorities (including sub-DAGs)

 Does not violate or change DAG semantics
 Higher numerical value equals “better”

priority

Node priorities (cont)

 Better priority nodes are not guaranteed to
run first!

 Effective node prio = max(explicit node prio,
parents' effective prios, DAG prio)

 For sub-DAGs, pretend that the sub-DAG is
spliced in

 Overrides priority in node job submit file
 Not relative to other users

61

62

Bailing out: DAG abort

 In DAG input file:
ABORT-DAG-ON JobName AbortExitValue
[RETURN DagReturnValue]

 If node value is AbortExitValue, the
entire DAG is aborted immediately, implying
that queued node jobs are removed, and a
rescue DAG is created.

 Can be used for conditionally skipping
nodes (especially with sub-DAGs)

Cleaning up: FINAL nodes

 FINAL node always runs at end of DAG
(even on failure)

 Use: garbage collect intermediate files
 Use FINAL in place of JOB in DAG file:

FINAL NodeName SubmitFile
 At most one FINAL node per DAG
 FINAL nodes cannot have parents or
children (but can have PRE/POST scripts)

 Cannot have retries, category or priority
63

FINAL nodes (cont)

 Success or failure of the FINAL node
determines the success of the entire DAG

 PRE and POST scripts of FINAL (and
other) nodes can use $DAG_STATUS and
$FAILED_COUNT to determine the state of
the workflow

 $(DAG_STATUS) and $(FAILED_COUNT)
available as VARS

64

Doing nothing: no-op nodes
 Appending the keyword NOOP causes a job

to not be run, without affecting the DAG
structure.

 The PRE and POST scripts of NOOP
nodes will be run. If this is not desired,
comment them out.

 Can be used to test DAG structure
 Also avoid “combinatorial explosion” of

dependencies

65

No-op nodes (ex)
Simplify DAG structure

NOOP

No-op nodes (ex)

 Here is an example:
file name: diamond.dag

Job A a.submit NOOP

Job B b.submit NOOP

Job C c.submit NOOP

Job D d.submit NOOP

Parent A Child B C

Parent B C Child D

 Submitting this to DAGMan will cause
DAGMan to exercise the DAG, without
actually running node jobs.

67

There's lots more...

 See the DAGMan chapter of the
HTCondor manual:
http://research.cs.wisc.edu/htcondor/man
ual/v8.5/2_10DAGMan_Applications.html

 Talk to me (Kent Wenger) some time this
week

 For more questions:
htcondor-admin@cs.wisc.edu, htcondor-
users@cs.wisc.edu

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_10DAGMan_Applications.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_10DAGMan_Applications.html
mailto:htcondor-admin@cs.wisc.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

