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What are workflows?

 General: a sequence of connected steps
 Our case:

 Steps are HTCondor jobs (really, submit files)
 Sequence defined at higher level
 Controlled by a Workflow Management System 

(WMS), not just a script



Why use workflows?

 Job A must complete successfully before job B starts
 Typically, job A produces output file(s) that are inputs to job B
 Can't do this with a single submit file

A

B

 Dependencies between jobs:



Workflow example with files

Job 
A

File 1

Job 
B

File 2

File 3
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Workflows – launch and forget

 Automates tasks user could perform manually (for 
example, the previous slide)…
 But Workflow Management System takes care of 

automatically
 A workflow can take days, weeks or even months
 The result: one user action can utilize many 

resources while maintaining complex job inter-
dependencies and data flows



Workflow management systems
 DAGMan (Directed Acyclic Graph Manager)

 HTCondor's WMS (this talk)
 Pegasus

 A higher level on top of DAGMan
 Data- and grid-aware

 Hands-on tutorial this afternoon (separate 
session)

 Talk Friday



Example workflow

...10k...

Preparation

Simulation

Analysis

NOOP?

CleanupFinal
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DAG (directed acyclic graph) 
definitions

 DAGs have one or more 
nodes  (or vertices)

 Dependencies are 
represented by arcs (or 
edges). These are arrows 
that go from parent to 
child)

 No cycles!

A

B C

D

No!



Basic DAG commands

 Job command defines a name, associates that 
name with an HTCondor submit file

 The name is used in many other DAG commands
 Required in all DAG files
 “Job” should really be “node”

 Parent...child command creates a dependency 
between nodes

 Child cannot run until parent completes 
successfully
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Defining a DAG to DAGMan

A  DAG input file defines a DAG:

# file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D
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Jobs/clusters

 Submit description files used in a DAG can 
create multiple jobs,
but they must all be in a single cluster.
 A submit file that creates >1 cluster causes 
node failure.

 The failure of any job means the entire 
cluster fails. Other jobs in the cluster are 
removed.

 Don't use large clusters within DAGs.
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Node success or failure

 A node either succeeds or 
fails

 Based on the exit code of 
the job(s)

0: success
not 0: failure

 This example: C fails
 Failed nodes block 

execution; DAG fails

A

B C

D



PRE/POST scripts – why?

 Set up input
 Check output
 Dynamically create submit file or sub-DAG 
(more later)

 Probably lots of other reasons…

 Should be lightweight (run on submit 
machine)
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PRE and POST scripts (cont)
 DAGMan allows optional PRE and/or POST scripts 

for any node
 Not necessarily a script: any executable
 Run before (PRE) or after (POST) job

PRE script

HTCondor
job

POST script

A Scripts run on submit machine 
(not execute machine)

 In the DAG input file:
 Job A a.submit
 SCRIPT PRE A script_name 

arguments
 SCRIPT POST A script_name 

arguments
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DAG node with scripts
 DAGMan treats the node as a 

unit (e.g., dependencies are 
between nodes)

 PRE script, Job, or POST 
script determines node 
success or failure (table in 
manual gives details)

 If PRE script fails, job and 
POST script are not run 
(changed as of 8.5.5)

 If job fails, POST is run

PRE script

HTCondor
job

POST script

Node
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Script argument 
variables

  $JOB: node name
  $JOBID: Condor ID (cluster.proc) (POST only)
  $RETRY: current retry
  $MAX_RETRIES: max # of retries
  $RETURN: exit code of HTCondor job (POST only)
  $PRE_SCRIPT_RETURN: PRE script return value (POST 

only)
  $DAG_STATUS: A number indicating the state of  

DAGMan.  See the manual for details.
  $FAILED_COUNT: the number of nodes that have failed 

in the DAG



Don't re-do work: PRE_SKIP
 Allows PRE script to immediately declare node successful 

(job and POST script are not run)
 In the DAG input file:

JOB A A.cmd

SCRIPT PRE A A.pre

PRE_SKIP node_name non-zero_integer

 If the PRE script of A exits with the specified value, the 
node succeeds immediately, and the node job and POST 
script are skipped.

 If PRE script succeeds, node job and POST are run.
 If the PRE script fails with a different value, the node job 

and POST script are skipped (as if PRE_SKIP were not 
specified). 
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Submitting a DAG to HTCondor
 To submit an entire DAG, run

condor_submit_dag DagFile

 condor_submit_dag  creates a submit 
description file for DAGMan, and DAGMan itself is 
submitted as an HTCondor job (in the scheduler 
universe)

 -f(orce) option forces overwriting of existing files 
(to re-run a previously-run DAG)

 Don't try to run duplicate DAG instances!
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Monitoring running DAGs:
condor_q -dag

 Shows current workflow state
 The -dag option associates DAG node 

jobs with the parent DAGMan job
> condor_q -dag

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9618?...

 ID      OWNER/NODENAME      SUBMITTED     RUN_TIME ST PRI SIZE CMD

 767.0   wenger             5/15 10:41   0+00:00:32 R  0    2.2 condor_dagman -

 768.0    |-sub01           5/15 10:41   0+00:00:26 R  0    2.2 condor_dagman -

 771.0     |-nodeS01        5/15 10:41   0+00:00:12 R  0    0.0 sleep 30

 772.0     |-nodeS02        5/15 10:41   0+00:00:12 R  0    0.0 sleep 30

 769.0    |-node01          5/15 10:41   0+00:00:12 R  0    0.0 sleep 30

 770.0    |-node02          5/15 10:41   0+00:00:12 R  0    0.0 sleep 30

6 jobs; 0 completed, 0 removed, 0 idle, 6 running, 0 held, 0 suspended



Monitoring running DAGS: 
condor_q -batch

 A single line of output summarizing all jobs 
with the same batch name:

> condor_q -batch

-- Schedd: wenger@manta.cs.wisc.edu : <128.105.14.228:9618?...

OWNER  BATCH_NAME     SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS

wenger tmp.dag+779   5/15 10:45      3      2      1     12 784.0 ... 786.0

5 jobs; 0 completed, 0 removed, 1 idle, 4 running, 0 held, 0 suspended
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Monitoring a DAG: 
dagman.out file

  Logs detailed workflow history
  Mostly for debugging – first place to look if 

something goes wrong!
DagFile.dagman.out
  Verbosity controlled by the 
DAGMAN_VERBOSITY configuration macro and 
–debug n on the condor_submit_dag 
command line

 0: least verbose
 7: most verbose

 Don’t decrease verbosity unless really necessary
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Dagman.out contents

...

04/17/11 13:11:26 Submitting Condor Node A job(s)...

04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '=' 
'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a 
+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.

04/17/11 13:11:27       assigned Condor ID (180224.0.0)

04/17/11 13:11:27 Just submitted 1 job this cycle...

04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)

04/17/11 13:11:27 Number of idle job procs: 1

04/17/11 13:11:27 Of 4 nodes total:

04/17/11 13:11:27  Done     Pre   Queued    Post   Ready   Un-Ready   Failed

04/17/11 13:11:27   ===     ===      ===     ===     ===        ===      ===

04/17/11 13:11:27     0       0        1       0       0          3        0

04/17/11 13:11:27 0 job proc(s) currently held

...

This is a small excerpt of the dagman.out file.



Removing a running DAGs: 
condor_rm

 condor_rm dagman_id
 Removes entire workflow

 Removes all queued node jobs
 Kills PRE/POST scripts

 Creates rescue DAG (more on this on later)
 Work done by partially-completed node jobs 

is lost
• Relatively small jobs are good



Pausing a running DAG: 
hold/release

 condor_hold dagman_id
 “Pauses” the DAG

 Queued node jobs continue
 No new node jobs submitted
 No PRE or POST scripts are run

 DAGMan stays in queue if not released

 condor_release dagman_id
 DAGMan “catches up”, starts submitting jobs



Pausing a running DAG: halt file

 “Pauses” the DAG (different semantics than 
hold)

 Queued node jobs continue
 POST scripts are run as jobs finish
 No new jobs will be submitted and no PRE 

scripts will be run
 When all submitted jobs complete, DAGMan 

creates a rescue DAG and exits (if not un-halted)
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Halting a DAG (cont)
 Create a file named DagFile.halt in the same 

directory as your DAG file.
 Remove halt file to resume normal operation
 Should be noticed w/in 5 sec 

(DAGMAN_USER_LOG_SCAN_INTERVAL)

 Good if load on submit machine is very high
 Avoids hold/release problem of possible duplicate 

PRE/POST script instances

26



Make warnings into errors: 
DAGMAN_USE_STRICT

 Warnings are printed to dagman.out file – easy to 
ignore

 DAGMAN_USE_STRICT turns warnings into fatal errors
 Example: node category has no assigned nodes

 0: no warnings become errors
 1: severe warnings become errors
 2: medium-severity warnings become errors
 3: almost all warnings become errors
 Default is 1 (a good idea to increase)
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Handling failures: node 
retries

 For possibly transient errors
 Before a node is considered failed. . .

 Retry N times.  In the DAG file:
RETRY node_name max_retries

• Example: RETRY C 4
(to retry node C four times before calling the node 

failed)
 Retry N times, unless a node returns specific exit 

code. In the DAG file:
RETRY node_name max_retries UNLESS-

EXIT exit_code
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Node retries, continued

 Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value:

node fails

One node failure:
retry

Out of retries:
node fails



Handling failures: script deferral
 Re-try failed script (not entire node) after a 

specified deferral time
 Deferred scripts don't count against 

maxpre/maxpost
 In the DAG file:

SCRIPT [DEFER status time] PRE|POST 
node script_path args...

 If script exits with status, re-try after time (or 
more) seconds

 Added in 8.3.5
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Handling failures: Rescue DAGs
 Save the state of a partially-completed DAG
 Created when a node fails (after maximal 

progress) or the condor_dagman job is removed 
with condor_rm or when DAG is halted and all 
queued node jobs finish or when DAG is aborted
 DAGMan makes as much progress as possible in the 

face of failed nodes
 DAGMan immediately exits after writing a rescue 

DAG file
 Automatically run when you re-submit the original 

DAG (unless –force is passed to 
condor_submit_dag)
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Rescue DAGs (cont)

Run

Not run

A

B1

D

B2 B3

C1 C2 C3



Rescue DAGs (cont)
 The Rescue DAG file, by default, is only a partial 

DAG file.
 A partial Rescue DAG file contains only 

information about which nodes are done, and the 
number of retries remaining for nodes with retries.

 Does not contain information such as the actual 
DAG structure and the specification of the submit 
file for each node job.

 Partial Rescue DAGs are automatically parsed in 
combination with the original DAG file, which 
contains information such as the DAG structure.
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Rescue DAGs (cont)

 If you change something in the original 
DAG file, such as changing the submit file 
for a node job, that change will take effect 
when running a partial rescue DAG.

34
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Rescue DAG naming

  DagFile.rescue001, DagFile.rescue002, 
etc.

  Up to 100 by default (last is overwritten once you 
hit the limit)

  Newest (highest number) is run automatically 
when you re-submit the original DagFile

  condor_submit_dag -dorescuefrom number to 
run specific rescue DAG
 Newer rescue DAGs are renamed



Composing workflows: sub-
DAGs and splices

 Incorporate multiple DAG files into a 
single workflow

 Sub-DAGs: separate DAGMan instance 
for each component

 Splices: components are directly 
incorporated into top-level DAG



Why sub-DAGs?

 Dynamic workflow generation (sub-DAGs 
can be created “on the fly”)

 Re-try multiple nodes as a unit
 Short-circuit parts of the workflow (ABORT-
DAG-ON in sub-DAG)

 Scalability (can reduce memory footprint)
 Can have different config settings for 

components
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Why splices?
 Advantages of splices over sub-DAGs:

 Reduced overhead (single DAGMan instance)
 Simplicity (e.g., single rescue DAG)
 Throttles apply across entire workflow
 Unified status for entire workflow (condor_q, 

etc.)
 Limitations of splices:

 Splices cannot have PRE and POST scripts 
(for now)

 Splices cannot have retries
 Splice DAGs must exist at submit time
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Sub-DAGs

 Multiple DAG files in a single workflow (runs the 
sub-DAG as a job within the top-level DAG)

 In the DAG input file:
SUBDAG EXTERNAL JobName DagFileName

 Any number of levels
 Sub-DAG nodes are like any other (can have 

PRE/POST scripts, retries, DIR, etc.)
 Each sub-DAG has its own DAGMan

 Separate throttles for each sub-DAG
 Separate rescue DAGs (run automatically)
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Splices

 Multiple DAG files in a single workflow 
(directly includes splice DAG’s nodes within 
the top-level DAG)

 In the DAG input file:
SPLICE JobName DagFileName

 Splices can be nested (and combined with 
sub-DAGs)



Splice pin connections

 Ready for beta test (any volunteers?)
 Allows more flexible parent/child 

relationships between nodes within splices
 Parsed when DAGMan starts up
 Not for sub-DAGs



Splice pin connections (cont)

Parent/child Pin connection



Splice pin connections (cont)

Pin ins

Pin outs

 Define node/pin connections w/in splices
 Pins are connected one-to-one



Splice pin connections (cont)

 Syntax in upper-level DAG:

SPLICE splice1_name dag_file1

SPLICE splice2_name dag_file2

CONNECT splice1_name splice2_name
 Syntax within splice DAG:

PIN_IN node_name pin_number

PIN_OUT node_name pin_number
 Pin/node connections can be many-to-many
 Pin numbers start at 1
 Pin outs of splice 1 connected to pin ins of splice 2



Include

 Ready for beta test (any volunteers?)
 Directly incorporates the commands of the 

specified file
 Parsed when DAGMan starts up
 Syntax:

INCLUDE dag_file
 Can be used to define PIN_IN/PIN_OUT



Identifying your workflow: 
batch name

 Propagated to all parts of a workflow (8.5.5)
 JobBatchName attribute in ClassAds

 Defaults to dag_file+cluster if not 
specified (8.5.5)

 Groups jobs in condor_q output
 Syntax:

condor_submit_dag -batch-name name 
...



New POST script 
semantics

 POST script is no longer run if PRE script 
fails (as of 8.5.5)

 Get old semantics by setting 
DAGMAN_ALWAYS_RUN_POST to True



Set ClassAd attributes in 
DAG file

 Sets attribute in DAGMan's own ClassAd
 Syntax:

SET_JOB_ATTR attribute_name = 
value
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Don't overload things: 
throttling

  Limit load on submit machine and pool
 Maxjobs N  limits jobs in queue
 Maxidle N  submit jobs until idle limit is hit

 Can get more idle jobs if jobs are evicted
 Maxpre N  limits PRE scripts
 Maxpost N  limits POST scripts

  All limits are per DAGMan, not global for the 
pool or submit machine (sub-DAGs count 
separately)

  Limits can be specified as arguments to 
condor_submit_dag or in configuration
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Throttling (cont)

  Example with per-DAG config file
# file name: foo.dag
CONFIG foo.config

# file name: foo.config
DAGMAN_MAX_JOBS_SUBMITTED = 100
DAGMAN_MAX_JOBS_IDLE = 5
DAGMAN_MAX_PRE_SCRIPTS = 3
DAGMAN_MAX_POST_SCRIPTS = 15
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Finer-grained throttling

Setup

Cleanup

Big job

Small jobSmall jobSmall job

Big job

Small jobSmall jobSmall job

Big job

Small jobSmall jobSmall job
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Node category throttles

Useful with different types of jobs that cause 
different loads
In the DAG input file:

CATEGORY JobName CategoryName
MAXJOBS CategoryName MaxJobsValue

Applies the MaxJobsValue setting to only jobs 
assigned to the given category
Global throttles still apply
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Cross-splice node categories

 Prefix category name with “+”
MaxJobs +init 2

Category A +init
 Set MaxJobs in top-level DAG
 Assign nodes to categories within splices
 See the Splice section in the manual for 
details
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Submit file re-use: node 
variables

  To re-use submit files for multiple nodes
  In DAG input file:
VARS JobName varname="value" 
[varname="value"... ]

  In submit description file:
$(varname) 

  varname can only contain alphanumeric characters 
and underscore

  varname cannot begin with “queue”
  varname is not case-sensitive
  varname beginning with “+” defines ClassAd 

attribute (e.g., +State = “Wisconsin”) 



Node variables (cont)

 Double quotes in Value must be escaped
 The variable $(JOB)contains the DAG 

node name
 $(RETRY) contains retry count
 Any number of VARS values per node
 DAGMan warns (in dagman.out) if a VAR 

name is defined more than once for a node
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Node variables (ex)

# foo.dag

Job B10 B.sub

Vars B10 infile=”B_in.10”

Vars B10 +myattr=”4321”

# B.sub

input = $(infile)

arguments = $$([myattr])
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Tuning DAGMan: DAGMan 
configuration

 A few dozen DAGMan-specific 
configuration macros (see the manual…)

 From lowest to highest precedence
 HTCondor configuration files
 User’s environment variables:

  _CONDOR_macroname
 DAG-specific configuration file (preferable)
 condor_submit_dag command line 

(recorded in dagman.out file)
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Per-DAG configuration

 In DAG input file:
CONFIG ConfigFileName 
or command line:
condor_submit_dag –config 
ConfigFileName ...

 Generally prefer CONFIG in DAG file over 
condor_submit_dag -config or individual 
arguments

 Specifying more than one configuration file is 
an error. 



Per-DAG configuration (cont)

 Configuration entries not related to 
DAGMan are ignored

 Syntax like any other HTCondor config file
# file name: bar.dag

CONFIG bar.config

# file name: bar.config

DAGMAN_ALWAYS_RUN_POST = True

DAGMAN_MAX_SUBMIT_ATTEMPTS = 2
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Optimize your workflow: node 
priorities

 In the DAG input file:
PRIORITY JobName PriorityValue

 Determines order of submission of ready 
nodes

 DAG node priorities are propagated to job 
priorities (including sub-DAGs)

 Does not violate or change DAG semantics
 Higher numerical value equals “better” 

priority



Node priorities (cont)

 Better priority nodes are not guaranteed to 
run first!

 Effective node prio = max(explicit node prio, 
parents' effective prios, DAG prio)

 For sub-DAGs, pretend that the sub-DAG is 
spliced in

 Overrides priority in node job submit file
 Not relative to other users
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Bailing out: DAG abort

 In DAG input file:
ABORT-DAG-ON JobName AbortExitValue 
[RETURN DagReturnValue] 

 If node value is AbortExitValue, the 
entire DAG is aborted immediately, implying 
that queued node jobs are removed, and a 
rescue DAG is created.

 Can be used for conditionally skipping 
nodes (especially with sub-DAGs)



Cleaning up: FINAL nodes

 FINAL node always runs at end of DAG 
(even on failure)

 Use: garbage collect intermediate files
 Use FINAL in place of JOB in DAG file:

FINAL NodeName SubmitFile
 At most one FINAL node per DAG
 FINAL nodes cannot have parents or 
children (but can have PRE/POST scripts)

 Cannot have retries, category or priority
63



FINAL nodes (cont)

 Success or failure of the FINAL node 
determines the success of the entire DAG

 PRE and POST scripts of FINAL (and 
other) nodes can use $DAG_STATUS and 
$FAILED_COUNT to determine the state of 
the workflow

 $(DAG_STATUS) and $(FAILED_COUNT) 
available as VARS
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Doing nothing: no-op nodes
 Appending the keyword NOOP causes a job 

to not be run, without affecting the DAG 
structure.

 The PRE and POST scripts of NOOP 
nodes will be run. If this is not desired, 
comment them out.

 Can be used to test DAG structure
 Also avoid “combinatorial explosion” of 

dependencies
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No-op nodes (ex)
Simplify DAG structure 

NOOP



No-op nodes (ex)

 Here is an example:
# file name: diamond.dag

Job A a.submit NOOP

Job B b.submit NOOP

Job C c.submit NOOP

Job D d.submit NOOP

Parent A Child B C

Parent B C Child D

 Submitting this to DAGMan will cause 
DAGMan to exercise the DAG, without 
actually running node jobs.
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There's lots more...

 See the DAGMan chapter of the 
HTCondor manual:
http://research.cs.wisc.edu/htcondor/man
ual/v8.5/2_10DAGMan_Applications.html

 Talk to me (Kent Wenger) some time this 
week

 For more questions: 
htcondor-admin@cs.wisc.edu, htcondor-
users@cs.wisc.edu

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_10DAGMan_Applications.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_10DAGMan_Applications.html
mailto:htcondor-admin@cs.wisc.edu
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