
Once more, with feeling!
A monitoring feedback loop

for HTC jobs
with unknown requirements

Ben Tovar
University of Notre Dame

btovar@nd.edu

Where we are

Scientist says:
"This demo task runs on my laptop, but I need much more for the real
application. It would be great if we can run O(25K) tasks like this on this
cloud/grid/cluster I have heard so much about."

Who we are

The Cooperative Computing Lab
Computer Science and Engineering

University of Notre Dame

Cooperative Computing Lab

Not shown, grad students: Tim Shaffer , Chao Zheng

CCL Objectives

• Harness all the resources that are available: desktops,
clusters, clouds, and grids.

• Make it easy to scale up from one desktop to national
scale infrastructure.

• Provide familiar interfaces that make it easy to connect
existing apps together.

• Allow portability across operating systems, storage
systems, middleware…

• Make simple things easy, and complex things possible.
• No special privileges required.

CCTools

• Open source, GNU General Public License.
• Compiles in 1-2 minutes, installs in $HOME.
• Runs on Linux, Solaris, MacOS, Cygwin, FreeBSD, …
• Interoperates with many distributed computing systems.

– Condor, SGE, Torque, Globus, iRODS, Hadoop…
• Components:

– Makeflow – A portable workflow manager.
– Work Queue – A lightweight distributed execution system.
– All-Pairs / Wavefront / SAND – Specialized execution engines.
– Parrot – A personal user-level virtual file system.
– Chirp – A user-level distributed filesystem.

Long-tail of science

Individual researchers and small laboratories that:

 Need to curate, manage, and analyse large amounts of data.

May not know how to access computational resources available to them.

May not have immediate access to the required resources.

(i.e., they know their discipline, but they do not have an HTC expert in their team)

Notre Dame's happy opportunistic situation

● ~25k cores at Notre Dame's Center for Research
Computing (CRC)

● They belong to different individual PIs, but they are
available through condor when not used by their owners.

condor.cse.nd.edu

Dialogue with our target users

Dialogue with our target users

- How much memory does it use?
- Eh....

Dialogue with our target users

- How much memory does it use?
- Eh....

- What about disk usage?
- Well...

Dialogue with our target users

- How much memory does it use?
- Eh....

- What about disk usage?
- Well...

- A ballpark figure?
- Mmm... It runs in my laptop...

Dialogue with our target users

- How much memory does it use?
- Eh....

- What about disk usage?
- Well...

- A ballpark figure?
- Mmm... It runs in my laptop...

- Surely you have a list of all the files used?
- ...

Dialogue with our target users

- How much memory does it use?
- Eh....

- What about disk usage?
- Well...

- A ballpark figure?
- Mmm... It runs in my laptop...

- Surely you have a list of all the files used?
- ...

Dialog with our target users

- Ok, I think we got the condor info right...
SuperSequencer3000 seems to be working on the remotes nodes now.
- Yaaaay! I'll run our workflow shortly!

Dialog with our target users

- It does not work anymore? Did you change anything?
- No!

Dialog with our target users

- It does not work anymore? Did you change anything?
- No!

- Your jobs are running out of disk. Nothing changed?
- No!

Dialog with our target users

- It does not work anymore? Did you change anything?
- No!

- Your jobs are running out of disk. Nothing changed?
- No!

- Wait, that parameter looks different from last time.

Dialog with our target users

- It does not work anymore? Did you change anything?
- No!

- Your jobs are running out of disk. Nothing changed?
- No!

- Wait, that parameter looks different from last time.
- Oh, that! Yes, we did change that...

Dialog with our target users

- It does not work anymore? Did you change anything?
- No!

- Your jobs are running out of disk. Nothing changed?
- No!

- Wait, that parameter looks different from last time.
- Oh, that! Yes, we did change that...

Dialog with our target users

- It does not work anymore? Did you change anything?
- No!

- Your jobs are running out of disk. Nothing changed?
- No!

- Wait, that parameter looks different from last time.
- Oh, that! Yes, we did change that...
...but we need to change that parameter often for our research...

Where we want to be

Archive

Run my
scientific workflow!

Execution System
(e.g. Condor)

resources
historical data

resources
measurements

Estimation

resources
provision

Tasks with Unknown Resource Requirements

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

Available condor slots

Tasks with Unknown Resource Requirements

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

Available condor slots

One task per slot:
Wasted resources, reduced throughput.

Many tasks per slot (e.g. with pilot job):
Resource contention/exhaustion, reduce
throughput

Task-in-the-Box

Condor slots

Task-in-the-Box

Condor slots

Allocations
inside a slot

Task-in-the-Box

Condor slots

One task per
allocation

One task per
allocation

Task-in-the-Box

Condor slots

Task exhausted
its allocation

One task per
allocation

Task-in-the-Box

Condor slots

Retry allocating a
whole slot

One task per
allocation

Main Challenges

What is a good allocation size?

How do we measure the tasks?

How do we enforce the allocations?

One-guess policy result (guess once, then use max seen)

Real result from a production High-Energy Physics CMS analysis
(Lobster NDCMS)

Histogram Peak Memory vs Number of Tasks
O(700K) tasks that ran in O(26K) cores managed by WorkQueue/Condor.

First-allocation that maximizes expected
throughput

(increase of %40 w.r.t. no task is retried)

And around it goes...

And around it goes...

What do we know?

Historical data?
Probability distribution?
Perfect information?
Empirical distribution?

And around it goes...

What do we know?

Historical data?
Probability distribution?
Perfect information?
Empirical distribution?

What do we want?

Minimize retries?
Minimize waste?
Maximize throughput?

Slow-peaks model

Random variables to
describe usage:
Time to completion.
Size of max peak

Resource usage:
time x peak

Slow-peaks:
Resource peaks at
the end of execution
(conservative
assumption)

Slow-peaks model

Choice of:
maximum throughput
minimum waste.

Optimizations over expectations

O(n) simple arithmetic expressions that
use only information available during
execution.

Integrated in CCTools (next major release)

makeflow --max-throughput -Tcondor myworkflow

unix make style recipes

output.0: input.0 cmd
./cmd -i input.0 output.0

output.1: input.1 othercmd
./othercmd < input.1 > output.1

Activate monitor and allocations

Submit jobs to condor.
Allocations in terms of

request_cpus,
request_memory and

request_disk.

We need monitoring for all of this

Mechanisms available to unprivileged users
root permissions or loading kernel modules are a no go

Tasks as trees of processes
no whole systems or individual processes

High-throughput computing
measure so we can run many tasks at the same time,
not to profile a single instance to make it run faster

We need monitoring for all of this

Monitoring as an unprivileged user is hard!

● No permissions

● No ways to add needed kernel support

● What the user wants to measure is different to what a system administrator

may care about. (E.g., cpu usage of a single task v.s. system load.)

● Tracking children processes is hard without wrapping the parent process.

Need to measure individual tasks, not individual users or
systems.

Integrated in CCTools

resource_monitor -L"cores: 4" -L"memory: 4096" -- matlab

(does not work as well on static executables that fork)

Recent development: Monitoring Library

The resource_monitor main functionality was converted
into a library, with C, Python, and perl interfaces.

An application can
poll its resources
usage with a single
library call.

(unlike resource_monitor, does not track forks/exits)

ND CMS workflow distributions

● 681874 tasks on Lobster/WorkQueue/Condor
● Computing allocations takes ~ 0.05 seconds.

of

 ta
sk

s

wall-time, peak 25000 s cpu-time peak 6000 s

disk peak at 1GB

ND CMS workflow: Memory bottleneck

Size Retries Proportion
wasted

Throughput
(norm)

Max peak always 3GB 0% 48% 1.0

Perfect information - 0% 0% 2.0

Slow-peaks one-
guess

1.9GB 9% 28% 1.41

ND CMS workflow: Memory bottleneck

Size Retries Proportion
wasted

Throughput
(norm)

Max peak always 3GB 0% 48% 1.0

Perfect information - 0% 0% 2.0

Slow-peaks one-
guess

1.9GB 9% 28% 1.41

One-guess +
categories

(per
category)

< 1% 17% 1.64

Things are even better if users give coarse information about the workflow.
As simple as putting tasks into categories (e.g., merge, analysis recostep,
parameter-X, etc.)

Questions?

Downloads:

cctools
http://ccl.cse.nd.edu

btovar@nd.edu

(Paper under current blind-review.

If you are a reviewer,

you are feeling very sleepy...

At the count of three

you will forget all of this...)

Acknowledgements:

Many thanks to ND CMS group:

Prof. Kevin Lannon
Anna Woodard
Mathias Wolf
Kenyi Hurtado

DOE Grant: ER26110

