
Provisioning on EC2
with HTCondor

Condor Week 2016

John Hover <jhover@bnl.gov>
Jose Caballero Bejar <jcaballero@bnl.gov>

Carlos Gamboa<cgamboa@bnl.gov>
Michael O’Connor<moc@bnl.gov>

mailto:jhover@bnl.gov
mailto:cgamboa@bnl.gov

Purpose of this talk

Half project report, half tutorial.

How did ATLAS run at large scale (thousands of VMs, tens of thousands of cores)
on AWS?

Sufficient details in slides and references to do the same.

NOTE: Several slides have details we won’t delve into. Here for reference.

Can we run on AWS?

Enough info to determine if it can be done efficiently/economically.

Some general guidelines/strategies.

Context
US ATLAS facility wanted option of moving some work to AWS in order to free up
dedicated data centers.

AWS initiated intensive demo project funded by US$200K grant in credits. Goal
was for ATLAS to adapt fully to run in production on AWS; demonstrate the ability
to do so economically.

Site visits. Weekly phone tag-ups.

Engineering team support, Spot team advice.

ATLAS/BNL involvement: data, networking, workload system, provisioning

Role of HTCondor
We (ATLAS) already have a provisioning utility (AutoPyFactory) that is a layer on
top of Condor-G used to submit Grid pilot jobs to all ATLAS sites in the world.

Used heavily by ATLAS sites as local batch system (including Brookhaven
Laboratory)

HTCondor becoming de-facto CERN standard batch system.

Made sense to use for provisioning VMs on EC2.

And obviously sensible to use as virtual cluster batch system to run pilot jobs.

Overall HTCondor Amazon Architecture
Hybrid cloud.

Static components set up on dedicated computers at Brookhaven Lab. Three
substantial hosts with good network and public IPs.

Only execute (startd) hosts are run on VMs in EC2; connecting back to pool at
BNL.

A lot of these guidelines generally apply to any very large pool, with some
additional WAN-related items (since workers may be all over the US, or the world).

Driving principle is to maximize the ability to provisiong capacity as needed.

6

OS-level tweaks {collector, negotiator, schedd}

/etc/security/limits.conf
* - nofile 1000000
* - nproc unlimited
* - memlock unlimited
* - locks unlimited
* - core unlimited

/etc/sysctl.conf
fs.file-max = 1000000

sysctl -w net.core.rmem_max=8388608
sysctl -w net.core.wmem_max=8388608
sysctl -w net.core.rmem_default=65536
sysctl -w net.core.wmem_default=65536
sysctl -w net.ipv4.tcp_rmem='4096 87380 8388608'
sysctl -w net.ipv4.tcp_wmem='4096 65536 8388608'
sysctl -w net.ipv4.tcp_mem='8388608 8388608
8388608'
sysctl -w net.ipv4.route.flush=1

In general, we’re assuming that nodes have plenty of CPUs and RAM sufficient to
run a compute-intensive service. Remove all the OS system and networking limits
you can...

HTCondor pool config and scaling {collector, negotiator}
● Multi-process collector

○ Collector process is single-threaded, so suffers from some scalability issues.
○ Instead, setup to use multiple collector processes:

COLLECTOR_SOCKET_BUFSIZE = 20480000
COLLECTOR_HOST=$(CONDOR_HOST):29650
COLLECTOR1 = $(COLLECTOR)
COLLECTOR2 = $(COLLECTOR)
COLLECTOR1_ARGS = -f -p 29660
COLLECTOR2_ARGS = -f -p 29661
COLLECTOR_NAME=$(FULL_HOSTNAME)
COLLECTOR1_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/Collector1Log …”
COLLECTOR2_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/Collector2Log …”
DAEMON_LIST = $(DAEMON_LIST) COLLECTOR1 COLLECTOR2

See: https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=HowToConfigCollectors

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToConfigCollectors
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToConfigCollectors
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToConfigCollectors

HTCondor pool config and scaling {collector, negotiator}

● Depth first filling of pool. To expose idle nodes ASAP.

NEGOTIATOR_POST_JOB_RANK = (RemoteOwner =?= UNDEFINED) * \
 (0 - cpus)

● NEGOTIATOR_INTERVAL = 300
NEGOTIATOR_INFORM_STARTD = False

HTCondor pool config and scaling {schedd}

GRIDMANAGER_MAX_PENDING_REQUESTS = 100
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE_EC2 = 30000
GRIDMANAGER_JOB_PROBE_INTERVAL = 600
GRIDMANAGER_JOB_PROBE_INTERVAL_EC2 = 600

Basically bump up any polling and max_X values by 50% to 100%.

HTCondor pool config and scaling {startd}
Use partitionable slots: Maximizes flexibility of EC2 image.

SLOT_TYPE_1 = 100%
NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SlotWeight = Cpus

Use slot users to separate jobs. Reduces config on VM. (No shared filesystem
anyway).

SLOT1_USER = slot1
SLOT2_USER = slot2
DEDICATED_EXECUTE_ACCOUNT_REGEXP = slot.+
STARTER_ALLOW_RUNAS_OWNER = False
EXECUTE = /home/condor/execute

HTCondor pool config and scaling {startd} 2
Use the Condor Connection Broker (CCB)

This deals with the issue of workers behind a NAT or firewall. Automatically
triggers the creation of the CCB service on the collector.

CCB_ADDRESS = $(COLLECTOR_HOST)

Allow user on schedd (if s/he has the pool password) to administer (e.g. shut
down) the machine:

SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION = True
ALLOW_WRITE = $(ALLOW_WRITE), submit-side@matchsession/*
ALLOW_ADMINISTRATOR = condor_pool@*/*

This capability is critical so we can actively scale the cluster up and down.

HTCondor pool config and scaling {all}
● Password authentication

○ Avoid GSI overhead
○ Can’t use hostname-based auth safely over WAN.
○ Password baked into image (make AMI private!)

● Match session re-auth
○ SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION = True
○ Prevents renegotation of authentication on each connection.

● Shared port
○ Allows service to multiplex communication through a single port.

USE_SHARED_PORT = TRUE
DAEMON_LIST = $(DAEMON_LIST) SHARED_PORT

EC2 VM Config/Issues
EC2 attributes (e.g. AvailabilityZone) pulled from metadata service and published
to startd classad:

EC2PublicIP
EC2PublicDNS
EC2InstanceID
EC2InstanceType
EC2AMIID
EC2AvailabilityZone

We use Puppet w/ Facter, but custom init script also usable. See: http://svn.
usatlas.bnl.gov/svn/griddev/provisioning-templates/files/condor/condorconfig.init
EC2AvailabilityZone used in job requirements in multi-region pool.

http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/files/condor/condorconfig.init
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/files/condor/condorconfig.init
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/files/condor/condorconfig.init

Miscellaneous VM Configuration Notes
● Local ephemeral disk(s) turned into volume, formatted, and mounted at

runtime as /home. All apps configured to assume /home is “large”.
● LHCB Fast-benchmark integrated with Condor startd benchmarking, value

published in classad.
● CVMFS used for application software.
● CVMFS, HTCondor, and admin SSH authorized keys setup by Puppet
● No runtime software install/downloads.
● Amazon Machine Images (AMIs) built and configured using an

Imagefactory/Puppet/Hiera -based system. See for more info:

https://docs.google.
com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit
?usp=sharing

https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing

AWS Configuration and Scaling Notes
● Instance types

○ All instance types have different mixes of ephemeral disk sizes, CPU count,
memory, and network connectivity.

○ Block device mapping varies from type to type!
● EC2 Regions

○ Not all regions have the same instance types available!
● HVM vs. PV

○ Newer types only support HVM (Hardware virtualization). Older types only PV
(Paravirtual)

○ Requires separate VM creation process. (Now supported by Imagefactory)
● Resource limit increases via request/tickets.

○ Many places where protections can prevent acquiring capacity at scale.
○ E.g. max number of EBS disks, Each instance uses one implicitly for the root

partition.

AWS Configuration and Scaling
Instance type, region choice: Maximize variety for capacity and cost.

Spot bidding: Bid what resources are really worth to you.

For ATLAS $.03 cpu/hr was reasonable max. ($.25/hr for 8-core types, $.50/hr for
16-, etc.)
 ATLAS minimum profile (2GB RAM, 20GB disk/core)

18

Type Virt vCPU Mem Storage Bid/hr Comments

m2.4xlarge PV 8 68 2 x 840 $.25

m3.2xlarge HVM 8 30 2 x 80 $.25

r3.2xlarge HVM 8 61 1 x 160 $.25

r3.4xlarge HVM 16 122 1 x 320 $.50

r4.8xlarge HVM 32 244 2 x 320 $.80

i2.4xlarge HVM 16 122 4 x 800 $.50

i2.8xlarge HVM 32 244 8 x 800 $.80

cr1.8xlarge HVM 32 244 2 x 120 $.80 Not available in us-west-1

d2.4/8xlarge HVM 16 $.50 Problem booting. Omitted.

Data & Workload Adaptations: PanDA
● PanDA (Production and Distributed Analysis) Scaling/enhancements.

○ Event Service
■ One job does work in small pieces (10-15 minutes) and saves

intermediate output to S3. VM termination results in little lost work.
Next job picks up where last stopped.

■ At the end, a short merge job pulls all pieces from S3, merges them,
and stages out final result. Intermediate pieces then deleted, tracking
discarded.

○ ATLAS DDM (Dynamic Data Management)
■ Make S3 a first-class endpoint type. Aggressively delete unneeded

data.

Data & Workload Adaptations: Networking
● Normally AWS charges for exporting data from AWS (data egress)
● ESNet (the DOE research network provider) peered with Amazon at 3

locations.

Location Bandwidth EC2 Region

Reston Virginia 10GB (soon 40GB) us-east-1

Seattle Washington 100GB us-west-2

Sunnyvale California 100GB us-west-1

● ATLAS recieved waiver as long as data costs were less than 15% of total
compute bill.

21

Addl. test
results in
extra
slides.
Not long-
term
solution.

Separate
setup for
each EC2
region.
Each now
a Tier 2.

Data, Workload: General Guidelines
If you can make your jobs less than 30 minutes (20 minutes ideally) you don’t
need checkpointing.

Best practice would be to put all relevant input data into S3 in advance of run. You
don’t want to waste VM compute time copying large files in/out from outside AWS
(even though ingress is free).

Determine in advance your total data egress volume. Is $ acceptable?

Plan to delete unneeded data sooner rather than later. Do it programmatically!

September 2015 ATLAS EC2 Run
● ~45k cores
● US East region only (networking not ready on west coast)
● 10GB dedicated bandwidth between AWS and BNL
● Input data automatically pre-subscribed (copied to S3).
● Output pulled from S3 asynchronously after the run.
● ~6000 jobs (8-core multicore)
● ~4000 simultaneous VMs: mix of 8-,16-, and 32-core types. (8 >> 16 > 32)
● Ran ~5 days. 437,000 jobs completed, 402,000
● 3.2 million CPUhrs
● Compute cost approx $57K, Data+storage around $500.

Jobs, cores, Sept 10 - Sept 20, 2015

Cost Details (September 2015)
Total compute bill AWS: $57,000
Total storage element cost: $7,700 (to be eliminated…)
Total data transfer/storage cost: ~$800
CPU hours billed by AWS: 3.22 million CPU/hrs
CPU hours seen and used by ATLAS: 2.53 million CPU/hrs

(to be improved!)
Cost cpu/hr per AWS bill: $.017
Cost cpu/hr per ATLAS "goodput" $.022
Cost RACF cpu/hr per Tony Wong's* cost analysis: $.04

Ignores machine performance, but common jobs were at most ~50% faster at
RACF. *https://indico.cern.
ch/event/247864/contributions/1570317/attachments/426677/592243/Operating_Dedicated_Data_Centers
__Is_It_Cost-Effective.pdf

https://indico.cern.ch/event/247864/contributions/1570317/attachments/426677/592243/Operating_Dedicated_Data_Centers__Is_It_Cost-Effective.pdf
https://indico.cern.ch/event/247864/contributions/1570317/attachments/426677/592243/Operating_Dedicated_Data_Centers__Is_It_Cost-Effective.pdf
https://indico.cern.ch/event/247864/contributions/1570317/attachments/426677/592243/Operating_Dedicated_Data_Centers__Is_It_Cost-Effective.pdf
https://indico.cern.ch/event/247864/contributions/1570317/attachments/426677/592243/Operating_Dedicated_Data_Centers__Is_It_Cost-Effective.pdf

March 2016 100k-core run
We attempted a 3-region 100k- core (~6000 VM) run in March.

Encountered EC2 <RequestLimitExceeded> error due to hitting EC2 API denial-
of-service protections. These apply to the API endpoints and apply to all users.
Same problem also hit by CMS/Fermilab in February at same scale.

Once the problem was understood, HTCondor team rapidly changed how Condor-
G responded to seeing the error (i.e. by backing off). New code has been tested at
the 10,000 VM level with success.

Many thanks to Todd Miller et. al. for rapid response!

Next Steps for ATLAS; Relevant for anyone
Condor_annex

AWS Spot capacity tool

m4.* types (EBS only, no ephemeral)

Cleaner security (mechanism to pass in secrets that only root on the VM should
see).

Complete a 100k-core, 3-EC2-region, ~7000 VM demonstration run.

Convert our provisioning utility over to the HTCondor Python library. (Thanks to
Brian Bockelman!)

Questions?

References/Links

This talk:
https://docs.google.
com/presentation/d/15ppLKZ6mtbflPUdV7XveG6gRv233WwTT8zVRztSV8r0/edit
?usp=sharing

Similar OSG AWS Talk:
https://docs.google.
com/presentation/d/1MJVFMZiOLjdvDdjZeJSg3ZNaQbe2lkFeVZwXBP0Vfg8/edit
?usp=sharing

RACF/ATLAS Central Condor configuration file examples
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/condor/

HTCondor Scaling/EC2 Recipes
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=HowToManageLargeCondorPools
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=HowToSetUpElasticComputeCloudPools

https://docs.google.com/presentation/d/15ppLKZ6mtbflPUdV7XveG6gRv233WwTT8zVRztSV8r0/edit?usp=sharing
https://docs.google.com/presentation/d/15ppLKZ6mtbflPUdV7XveG6gRv233WwTT8zVRztSV8r0/edit?usp=sharing
https://docs.google.com/presentation/d/15ppLKZ6mtbflPUdV7XveG6gRv233WwTT8zVRztSV8r0/edit?usp=sharing
https://docs.google.com/presentation/d/15ppLKZ6mtbflPUdV7XveG6gRv233WwTT8zVRztSV8r0/edit?usp=sharing
https://docs.google.com/presentation/d/1MJVFMZiOLjdvDdjZeJSg3ZNaQbe2lkFeVZwXBP0Vfg8/edit?usp=sharing
https://docs.google.com/presentation/d/1MJVFMZiOLjdvDdjZeJSg3ZNaQbe2lkFeVZwXBP0Vfg8/edit?usp=sharing
https://docs.google.com/presentation/d/1MJVFMZiOLjdvDdjZeJSg3ZNaQbe2lkFeVZwXBP0Vfg8/edit?usp=sharing
https://docs.google.com/presentation/d/1MJVFMZiOLjdvDdjZeJSg3ZNaQbe2lkFeVZwXBP0Vfg8/edit?usp=sharing
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/condor/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/condor/
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToManageLargeCondorPools
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToManageLargeCondorPools
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToManageLargeCondorPools
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToSetUpElasticComputeCloudPools
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToSetUpElasticComputeCloudPools
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToSetUpElasticComputeCloudPools

Autopyfactory project
https://github.com/PanDAWMS/autopyfactory
https://github.com/PanDAWMS/autopyfactory-tools
Provisioning Toolkit Links:
https://docs.google.
com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit
?usp=sharing
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-config/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-toolkit/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/

Other Links:
https://twiki.cern.ch/twiki/bin/view/PanDA/EventServer
https://github.com/redhat-imaging/imagefactory

https://github.com/PanDAWMS/autopyfactory
https://github.com/PanDAWMS/autopyfactory
https://github.com/PanDAWMS/autopyfactory-tools
https://github.com/PanDAWMS/autopyfactory-tools
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
https://docs.google.com/presentation/d/1s5x2KNDIrzlZRsKhhqvJCnN23zyUgSz6YYb2ZYLpW2A/edit?usp=sharing
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-config/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-config/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-toolkit/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-toolkit/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/
http://svn.usatlas.bnl.gov/svn/griddev/provisioning-templates/
https://twiki.cern.ch/twiki/bin/view/PanDA/EventServer
https://twiki.cern.ch/twiki/bin/view/PanDA/EventServer
https://github.com/redhat-imaging/imagefactory
https://github.com/redhat-imaging/imagefactory

