Submit Machine
Management

Brian Bockelman
TCondor Week 2016

SO you want to build the
ultimate submit machine”

« While you can get HTCondor to run on your toaster in a weekend, providing a
high-quality scalable submit service can take significant planning and effort.

* |n this talk, we'll walk through the process of putting together the service,
noting special requirements for scalability and customization hooks.

* | focus on the non-obvious parts of this task; this is not “how to build your
first submit machine”.

* Roughly, three portions:
e Spec’ing out the service.
 |nstalling and Configure HTCondor.

e Customizing user environments.

Roadmap - Where Are We”?

- - - - - - - - - e — e e e - - - - - - - - e - - - = - - - - - - — — — — — -y

HTCondor Pool

Central Manager

(collector)(negotiator)
A=
dverti

advertise i K
[dvertise
(schedd) \
— run AN |

Submit Node job ~~ \\ |

[~~~

|| Worker Node

YOU ARE HERE

Spec’ing out the Service -
Setting Expectations

e Before we even get to hardware, you need to work with users to understand what kind of
service is needed:

* Job Scale:
* What is the maximum number of jobs this schedd will need to run”? The average?
« How many jobs are expected to be in queue?

- Job Rates: \What is the expected job start and stop rates? What does the distribution
look like?

- 10 requirements: What, if anything, do you know about your per-job input and output
transfer requirements?

- In general, it’s really hard to determine what the distributions look like. HTCondor keeps
only rough statistics itself. | prefer to do the highly scientific “multiply everything by two”
to determine peak scale.

Spec’ing out the Service -
Hardware Considerations

e Next, | outline the hardware considerations from most important to least.

e 10: The schedd is a single-threaded daemon which blocks on disk 1O and
frequently calls fsync() on its job database.

* Therefore, your overall scalability is limited by the latency of your storage
system.

e To maintain a stable service of >10k running jobs, you will want to keep the
spool directory on an SSD.

e A typical setup has:
* A dedicated, small, low-latency storage target for spool, AND

* Alarge (TBs), high-throughput storage target for user home/working
directories.

1TL:DR:
Buy a SSD, Live Happy

Spec’ing out the Service -
Hardware Considerations 2

Memory: As a rule of thumb, plan on 1TMB RAM per running job
and 50KB per idle job.

* In the last two years, this was reduced to 300-400KB per running
job. | still prefer the above number to include a bit of a safety
factor.

CPU: The schedd has no CPU-bound component (the process is
single-threaded anyway).

 Base your CPU decisions on the needs of the logged-in users
(i.e., compiling or running test jobs).

Network connectivity: Unless you are aware of specific needs
from your user base, 1Gbps is sufficient.

v

To shared filesystem or not?

 How do you move files between the submit and execute machines?

 With a shared file system: These can be expensive and finicky, but users often love
the simplicity. They don’t need to know what files they use.

* |t's often difficult to carefully control usage of the shared file system - life can be
chaotic!

« With HTCondor file transfer: Forces users to think and express their file
requirements inside the job.

* Requires more work from the user - however, it typically results in a more “1O
friendly” job. No user hammering AFS!

« HTCondor can throttle new transfers (future: not match machines) if the schedd is
spending too much time on [O. Shared file systems typically have no concept of
queueing and performance degrades massively!

* When using file transfers, it is simpler to run jobs offsite.

DANGER! WARNING!

* While we recommend using HTCondor file transfer, we
understand this is not always possible.

- NOTE the condor schedd writes user logs in-process.

It the user has this file on the shared file system and the

filesystem stops responding, then the schedd will stop
responding.

TCondor relies on a few obscure POSIX semantics for
user logs. No funny business such as FUSE
filesystems. Even NFS was finicky until the last 3-5
years.

OS Tweaks
(for schedds with >10k jobs)

o Memory overcommit: In /&i 2ommit_memory=1

ysctl.conf, sys.vm.oN

 Max socket backlog:gWetc/sysctl.conf, net.core.sog n=1024

« Max file descriptor ater than

most OSes!)

cet sys.fs.file-max to bg 10k (already is on

 Max per-process @8 descriptors: Ofile in /etc/security/I@8its.d.

e Maximum number of y/limits.d

« Beware of iptables conntrack module: Consider blacklisting the conntrack
module if you need many TCP connections (see scaling talk).\

. Still relevant for some sites

OS Tweaks - 8.4.x

e Starting in the latest series, HTCondor will now perform developer-
recommended reasonable kernel tunings on startup.

e [hese are selected so they should be safe for “anyone,” but do
touch some global settings.

e Sysadmins can turn this off (not recommended) or provide their
own overrides / additions (recommended).

e This was a contentious feature internally: the need for simplicity
versus reluctance to touch system settings.

e | suspect there is tuning of the approach left to do.

 Would love to hear feedback!

11

Host Firewalls and
Networking

 DNS: DNS is a mixed bag! HTCondor can work fine with- or without DNS; in fact, DNS failures (or
slow name resolution) often cause problems for submit services. Recommendations:

e Go all-in or all-out: don’t try to mix use of |IP addresses in some cases and DNS in others.

e |tisthe host name. There should be one per host; if you use DNS, the hostname should match
the public DNS name for simplicity. If you need a more complex setup, the
NETWORK_HOSTNAME config option overrides the hosthname detection logic.

« Consider your cluster’s dynamics: if there’s a small number (<50) of nodes and they won’t come
in and out of the cluster frequently, you may not need DNS.

e The worker nodes, central manager, and schedd need to be able to contact each other via the
network.

| highly recommend setting USE_SHARED_PORT=true (in fact, the plan is to make this the future

default) throughout your pool. This will allow all HTCondor daemons to use the same inbound port,
TCP 9618.

« HTCondor has the ability to rewrite addresses (for TCP port-forwarding setups) and intelligently
manage multiple private and public networks. While this means HTCondor can work with very
adverse networking conditions, think twice before using; they can be extremely difficult to debug.

12

Host Firewalls ana
Networking

« With shared port enabled, the firewall configuration becomes:

* Inbound connections: TCP 9618 from client hosts, the central manager, and worker
nodes.

 Outbound connections: Outbound connections are necessary to the central
manager and worker nodes.

« HTCondor phone home: By default, the HTCondor daemons report simple usage
statistics to UW via UDP. This is a requirement from the funding agencies;
consider leaving this on if you wish continued support of the software. For more,
see http://research.cs.wisc.edu/htcondor/privacy.html.

« By default, UDP updates are sent to the central manager; if desired, switch them
to TCP using UPDATE_COLLECTOR_WITH_TCP=true. All other outgoing

communication uses TCP.

 The CCB allows the worker nodes to be behind a separate stateful firewall or NAT (i.e.,
no inbound connectivity from the schedd). This is not typically used in site setups.

13

http://research.cs.wisc.edu/htcondor/privacy.html

Installing and Configuring

e Basics:

* Always install via RPM (debs); | strongly
discourage use of tarballs.

* Always maintain your configurations with
configuration management software such as
Puppet or Chet.

* Never edit condor_config or condor_config.local.
Always use the config.d directory:.

14

[ogging Considerations

e Consider enabling the AuditLog; this contains a concise log of who used
the schedd, what they did, and how they authenticated.

e Essential for security incidents!

* Explicitly determine your log retention policy; default is 10MB x 2 files
per log.

* Most large sites will want to retain more. | use 100MB x 10 files.

« Set the logfile name to SYSLOG to forward a HTCondor log to /dev/log.
Useful for sites that have an existing centralized log management
scheme and/or strict retention policies.

* In particular, sites should consider forwarding the AuditLog to syslog.

15

Monitoring - RHost

* Host-level monitoring and alerting iIs critical,
especially if users have a login to the submit host.

* This is not HTCondor-specific; apply the security
protections you believe needed for a generic

login host.

* Users are quicker than your alert system:;
typically, monitoring is best for post-crash

telemetry.

16

Monitoring - HTCondor

* All HTCondor daemons export 5-20 critical metrics in their
ClassAds.

* Recently, HTCondor delivered native integration with Ganglia.
This allows you to turn the above metrics into time series.

* When combined with host metrics (CPU usage, memory,
network activity), these are a powerful mechanism for
debugging problems.

* |f your site doesn’t use Ganglia for monitoring, the daemon

can integrate with your system by invoking a "gmetric”
compatible command-line utility.

17

Accounting

 While condor_history is great, the logs do rotate eventually.

e Don't walt until your boss asks about accounting usage to
discover this fact!

* |f you set PER_JOB_HISTORY_DIR, then the schedd records
the job ClassAd into a unique file when it leaves the queue.

* Accounting can be done by reading each of these files and
uploading to a DB.

e Alternately, the PER_JOB_HISTORY_DIR captures the job
execution instances on the remote startds. Further, this can
be queried centrally (if you have admin privileges).

18

Accounting

» Recall condor history can be invoked remotely.

e Via python bindings, one can collect the poolwide
history

* [ooking to make this more efficient in 8.5.x.

o Similarly, python bindings can fetch
PER_JOB_HISTORY_DIR from schedds and startds.

o Consider taking this centrally collected data and pushing
it into ElasticSearch. Popular to do this + Kibana.

Extensive CMS-specific example:
hittos://aithub.com/bbockelm/cms-htcondor-es

https://github.com/bbockelm/cms-htcondor-es

Configuration Knobs
to Investigate

SYSTEM_PERIODIC_REMOVE / SYSTEM_PERIODIC_HOLD: Expression
to either remove or hold “malformed” jobs.

* Check out SYSTEM_PERIODIC_XXX_REASON too!

MAX_JOBS_RUNNING / MAX_JOBS_SUBMITTED: Limit the number of
jobs running / submitted to prevent users from pushing the schedd into
swap.

FILE_TRANSFER_DISK_LOAD_THROTTLE: If you are using HTCondor
transfer mechanisms, this limits the amount of disk load HTCondor places
on the system (suggestion: set to N for a host with N spinning disks).

MAX_TRANSFER_{INPUT,OUTPUT}_MB: Avoid transferring excessive
amounts of data per job.

20

NEW - Managing User Job
ClassAds

e Historically, the job ClassAd “belongs” to the user. All attributes
except Owner could be modified by the user via condor ag.

However,
* Group accounting information is taken from ad.

* Some attributes (X509 certificate DN) are used by admins for
policy decisions.

* In 8.3.X, we introduced SUBMIT REQUIREMENTS: you can force
jobs to match certain constraints

* In 8.5.2, we introduced protected attributes: once set, can only
be changed by the sysadmin.

21

Managing User ClassAds

* Finally, the big hammer: custom ClassAd functions.
These can be written in python (easy) or C++
(hard).

* Use sparingly (i.e., in SUBMIT_REQUIREMENTS
but not job’s REQUIREMENTS).

* Must evaluate quickly; no side-eftfects, no state.

e |f it must access a remote service, cache
aggressively.

22

SUBMIT_REQUIREMENTS
Example

Config snippet:

SCHEDD . CLASSAD_USER_PYTHON_MODULES=my_utils
SCHEDD_ENVIRONMENT=“PYTHONPATH=/path/to/my_modules”
SUBMIT_REQUIREMENT_NAMES = CHECKTODD
SUBMIT_REQUIREMENT_CHECKTODD = isUserTodd(Owner)
SUBMIT_REQUIREMENT_CHECKTODD_REASON = \
strcat(“This 1s “, Owner, “ not Todd!”)

Python code example:

import classad

def 1sUserTodd (user, state={}):
return user == “todd”

classad.registe5§isUserTodd)

SUBMIT_REQUIREMENTS
Example

$ condor_run echo "Hello world"

Submitting job(s).

ERROR: Failed to commit job submission into the queue.
ERROR: This 1s bbockelm not Todd!

Failed to submit Condor job.

24

Setting up the User
Environment

* How does a user submit a job? It's a bit of a religious argument.

« School of thought #1: Make users learn condor_submit. There’s tons of documentation “on the internet”, allows
users to fully unlock the power of condor_submit, and is no-maintenance.

» School of thought #1.1: Write a small wrapper around condor_submit to “helpfully” fix obvious errors in files or
set a few site-specific defaults.

» Alternately, can control some defaults from the user environment. |.e., add the following to /etc/profile.d/
condor.sh:

* export _CONDOR_AccountingGroup=\"local."id -gn"."id -un'\”
* Periodically check schedd-side to see if a user is trying to game the system.

* School of thought #2: Any condor_* command is too damn hard to use. Replace it with a simpler site-specific
interface and train them to use this.

* Alternately, use condor_gsub because you like PBS-style scripts better!

e Note: wrapper scripts require the users to play along. Do not be surprised to find they bypass your script
when python bindings are used.

- School of through #2.1: Any command line is too hard for users; they only access the system through a
webapp.

25

User Environments -
Automating attribute settings

« Easy: Utilize SUBMIT_ATTRS. Add to the config file:

JobIsGrid = true _
SUBMIT_ATTRS = $(SUBMIT_ATTRS), JobIsGrid

 Medium: Use MODIFY_REQUEST_EXPR_* to modify a user’s
request_* at the startd or JOB_DEFAULT_* to modity at
condor_submit

 Medium: Use SCHEDD_ROUND_ATTR_ to round up arbitrary
attributes at the schedd.

 Medium-hard: Write a wrapper around your submit script.

 Hard: Use JobRouter to enforce policy schedd-side.

20

Upcoming Automation

* For automating attribute values, In 8.5.X, we hope
{O:

e Make SUBMIT ATTRS work schedd-side.
e Allow attributes to be evaluated at submit time.
* Re-introduce the “unexpanded”’ state. This

causes the schedd to not consider the job until it
has been transformed by the JobRouter.

27

lweaks

e |deas that make user’s life better:

e Use the custom condor_q / condor_status print
formats for your site.

* Take advantage of ~/.condor/user_config (user-
specific contig file, like ~/.bashrc); for example, you
can created this tile on first login with a PAM module
to lock the user to a specific schedd.

e Customize MOTD to tell the user a summary of their
jobs on login.

28

Print Formats

SELECT
Name AS Name WIDTH -18
OSG_Resource AS Resource WIDTH -18
0SG_BatchSystems AS Batch WIDTH -8
HTCondorCEVersion AS CEVer WIDTH -5
split(condorversion)[1] AS CondorVer
DaemonStartTime AS Uptime PRINTAS ACTIVITY_TIME

grid_resource AS Resource
SUMMARY NONE

29

Print Formats

=" bbockelm — root@red-gw1:~ — ssh hce-briantest — 188x35

[root®red-gwl ~]# condor_ce_status -schedd -pool collector.opensciencegrid.org

Resource

5+21:15:@5 condor
8420:41:16 condor

18+17:56:85 condor

5+15:16:53 condor
5+14:39:22 condor
3+23:23:01 condor
2+17:10:16 condor
3+22:50:44 condor
8+13:33:40 condor

18404:36:43 condor T3SERVEQ7 .MIT.EDU T3SERV@Q7 .MIT.EDU:2612
12+19:42:52 condor

atlt3gm.physics.arizona.edu atlt3gm.physics.arizona.edu:9619
bonnerdb.rice.edu bonnerdt.rice.edu:9619
byggvir.princeton.edu byggvir.princeton,edu:9619
calclab-ce.maoth.tomu.ecdu calclab-ce.moth.tomu.edu:9619
carter-o0sg.rcac.purdue.edu carter-0sg.rcac.purdue.edu:9619
ce@l.brozos. tamu.edu ce@l.brazos.tomu.edu:9619

cedl.cmsaf .mit.edu cedl.cmsof .mit.edu:9619

ce@2.cmsaf .mit.edu cedZ.cmsaof .mit.edu:9619

ce@3.cmsaf .mit.edu ce@3.cmsof .mit.edu:9619
cms-cel-0sg.rcac.purdue.edu cms-cel-0sg.rcoc.purdue.edu:9619

Nome Resource Batch CEVer CondorVer Uptime
T3SERV@Q7 MIT.EDU MIT_(MS_T3-CE1 Congor 2.0.0 8.4.3
atlt3gm.physics.arizona.edu Arizona_CE Condor 2.0.9 8.4.4
bonnerd6.rice.edu 0SG-Rice Condor 2.90.90 8.2.19
byggvir.princeton.edu UNAVATLABLE Condor 2.0.0 8.2.12
colclab-ce.math. tamu.edu TAMU_Calclab SLURM 2.0.9 8.2.10
corter-o0sg.rcac.purdue.edu Purdue-Carter P8S 1.2¢ 8.2.10
ce@l.brazos. tamu.edu TAMU_BRAZOS_CE SLURM 1.2¢ 8.2.9
cedl.cmsof.mit.ecu MIT_CMS Condor 1.16 8.4.9
ced2.cmsaf .mit . edu MIT_(MS_2 Condor 1.16 8.4.0
ce@3.cmsaf.mit.edu MIT_CMS Condor 2.0.2 8.4.3
cms-cel-0sg.rcac.purdue.edu Purdue-Hodoop-HTCE Condor 1.20 8.2.10
cms-ceZ-0sg.rcac.purdue.edu Purdue-Hadoop-HT-PBS-CE PBS 2.0.2 8.4.3
cms-grid@.hep.uprm. edu uprm-cms-ce Congor 1.14 B8.2.8
cms.rc.ufl.edu UFlorida-CMS P8S 2.0.9 8.4.3
cmsgric@l. hep.wisc.edu GLOW Condor 1.20 8.4.2
cmsgric@2.hep.wisc.edu GLOW-CMS Condor 1.20 8.4.2
cmsgric@3. hep.wisc.edu GLOW-CONDOR-CE Condor 1.20 8.4.2
cmsosgcee. fnol.gov cmsosgcee. fnal.gov Congor 2.0.9 8.2.8
cmsosgcel. fnal.gov cmsosgcel. fnal.gov Condor 2.0.0 8.2.8
cmsosgcee3. fnal.gov cmsosgee3. fnal.gov Condor 2.0.0 8.2.8
cmsosgces. fnal.gov cmsosgees. fnal.gov Condor 2.0.2 8.2.8
cmstestl.rcac.purdue.edu Purdue-Hadoop-Test(CE Condor 1.20 8.4.3
crane-gwl.unl.edu Crane-CE1 P8S 2.9.9 8.3.5
gote@2.grid.umich.edu AGLT2_CE_2 Condor 2.0.0 8.4.3
gote@d3.ogltZ.org AGLT2_TEST_CE Condor 2.0.2 8.4.3
gote@s.aglt2.org AGLT2_SL6 Condor 2.0.0 8.4.3
globusl.hyak.washington.edu Hyak_CE P8S 1.15 8.2.9
gocedl. fnal.gov gpcedl. fnal.gov Congor 2.0.9 8.2.8
gpced2. fnal .gov gpced2.fnal .gov Condor 2.0.0 8.2.8
gridgk@l.racf.bnl.gov BNL_ATLAS_1 Condor 1.1@ B8.2.7
gridgk®8.racf.bnl.gov BNL_ATLAS 8 Condor 1.16 8.2.8
gridtest@2.racf.bnl.gov BNL _Test_2 _CE_1 Condor 2.0.2 8.2.8
hodoop-0sg.rcac.purdue.edu Purdue-Hadoop-CE Condor 1.20 8.4.3

3+18:18:03
73+409:07:04
5+10:50:58
13+12:01:29
14404:00:35
23+17:30:32
3+21:47:21
3421:42:39
3+21:33:19
3+421:32:39
12+08:02:55
11+15:17:@2
4422:31:20
6+10:56:32
4422:14:54
11+10:45:15
46+404:12:17
2422:12:33
24401:25:15
9+16:46:50
8+16:49:42
3+21:53:52

condor
condor
condor
condor
condor
condor
condor
condor
condor
condgor
condor
condor
condor
condor
condor
condor
condgor
condor
condor
congor
condor
condor

30

cms-ce2-0sg.rcac.purdue.edu cms-ce2-0sg.rcac.purdue.edu:9619
cms-gricd.hep.uprm.edu cms-gridd.hep.uprm.edu:9619
cms.rc.ufl.edu oms.rc.ufl.edu:9619

cmsgrid@l.hep.wisc.edu cmsgrid@l.hep.wisc.edu:9619
cmsgridd2.hep.wisc.edu cmsgridd2.hep.wisc.edu:9619
cmsgrid@3.hep.wisc.edu cmsgrid@3.hep.wisc.edu:9619
cmsosgee. fnal.gov cmsosgce. fnal.gov:9619

cmsosgeel. fnal.gov cmsosgcel. fnal.gov:9619

cmsosgee3. fnol.gov cmsosgee3. fnal.gov:9619

cmsosgees, fnol.gov cmsosgceé. fnal.gov:9619
cmstestl.rcac.purdue.edu cmstestl.rcac.purdue.edu:9619
crone-gwl.unl.edu crane-gwl.unl.edu:9619
gate@2.grid.umich.edu gatedZ.grid.umich.edu:9619
gate@3.oglt2.org gated3.aglt2.org:9619

gate@4.oglt2.org goteds.oglt2.org:9619
globusl.hyak.washington.edu globusl.hyak.washington.edu:9619
gpce@l. fnal.gov gpcedl.fnal.gov:9619

gpced2. fnal.gov gpced2.fnal.gov:9619
gridgk@l1.racf.bnl.gov gridgk@l.racf.bnl.gov:9619
gridgk@8.racf.onl.gov gridgk?8.rocf.bnl.gov:9619
gridtest@2.racf.bnl.gov gridtest@2.racf.bnl.gov:9619
hacoop-0sg.rcac.purdue.edu hadoop-0sg.rcac.purdue.edu:9619

User education and training

A little bit of user education goes a long way!
* While we have dozens of “circuit breakers” in HTCondor to
prevent more common mistakes, it helps it the user doesn't
make them in the first place.

« A handful of topics to make your life easier (beyond the “standard
intro”):

 How to avoid invoking condor_q~
 How long to wait for a job to start / what to do when a job is idle”?

e What's an “excessive” number of jobs in the queue?

31

User Education -
Userlog files

« HTCondor users love to write the following code to submit or

monitor jobs:

while true
if [condor_g bbockelm -run | wc -1 -1t 100]; then
f_condor_submit some_file
3
sleep 1

e This is ufifi&cessarily wasteful of schedd resources: if enough users
do the same thing, the schedd may become unresponsive.

* |Instead, take advantage of the user logs which are typically
available locally and record the job litetime.

 Users don't even need to parse them - utilize condor_wait
Instead!

« condor_dagman will do this automatically for you!

32

Parting Ihoughts

* |n the latest stable series, the best scalability
tunings come out-of-the-box.

* Building a successful submit host is mostly about
NowW users interact with condor - filesystems & 1O,
inserting appropriate default attributes.

* Make sure you have both accounting and
monitoring in the planning from the beginning.

33

Questions?

