
Submit Machine
Management

Brian Bockelman
HTCondor Week 2016

1

So you want to build the
ultimate submit machine?

• While you can get HTCondor to run on your toaster in a weekend, providing a
high-quality scalable submit service can take significant planning and effort.

• In this talk, we’ll walk through the process of putting together the service,
noting special requirements for scalability and customization hooks.

• I focus on the non-obvious parts of this task; this is not “how to build your
first submit machine”.

• Roughly, three portions:

• Spec’ing out the service.

• Installing and Configure HTCondor.

• Customizing user environments.

2

Roadmap - Where Are We?

HTCondor Pool

Central Manager

collector negotiator

Submit Node

schedd

Worker Node
Worker Node

Worker Node

startd

advertise

advertise

run
job

match

YOU ARE HERE
3

Spec’ing out the Service -
Setting Expectations

• Before we even get to hardware, you need to work with users to understand what kind of
service is needed:

• Job Scale:

• What is the maximum number of jobs this schedd will need to run? The average?

• How many jobs are expected to be in queue?

• Job Rates: What is the expected job start and stop rates? What does the distribution
look like?

• IO requirements: What, if anything, do you know about your per-job input and output
transfer requirements?

• In general, it’s really hard to determine what the distributions look like. HTCondor keeps
only rough statistics itself. I prefer to do the highly scientific “multiply everything by two”
to determine peak scale.

4

Spec’ing out the Service -
Hardware Considerations

• Next, I outline the hardware considerations from most important to least.

• IO: The schedd is a single-threaded daemon which blocks on disk IO and
frequently calls fsync() on its job database.

• Therefore, your overall scalability is limited by the latency of your storage
system.

• To maintain a stable service of >10k running jobs, you will want to keep the
spool directory on an SSD.

• A typical setup has:

• A dedicated, small, low-latency storage target for spool, AND

• A large (TBs), high-throughput storage target for user home/working
directories.

5

TL;DR:
Buy a SSD, Live Happy

6

Spec’ing out the Service -
Hardware Considerations 2

• Memory: As a rule of thumb, plan on 1MB RAM per running job
and 50KB per idle job.

• In the last two years, this was reduced to 300-400KB per running
job. I still prefer the above number to include a bit of a safety
factor.

• CPU: The schedd has no CPU-bound component (the process is
single-threaded anyway).

• Base your CPU decisions on the needs of the logged-in users
(i.e., compiling or running test jobs).

• Network connectivity: Unless you are aware of specific needs
from your user base, 1Gbps is sufficient.

7

To shared filesystem or not?
• How do you move files between the submit and execute machines?

• With a shared file system: These can be expensive and finicky, but users often love
the simplicity. They don’t need to know what files they use.

• It’s often difficult to carefully control usage of the shared file system - life can be
chaotic!

• With HTCondor file transfer: Forces users to think and express their file
requirements inside the job.

• Requires more work from the user - however, it typically results in a more “IO
friendly” job. No user hammering AFS!

• HTCondor can throttle new transfers (future: not match machines) if the schedd is
spending too much time on IO. Shared file systems typically have no concept of
queueing and performance degrades massively!

• When using file transfers, it is simpler to run jobs offsite.

8

• While we recommend using HTCondor file transfer, we
understand this is not always possible.

• NOTE the condor_schedd writes user logs in-process.
If the user has this file on the shared file system and the
filesystem stops responding, then the schedd will stop
responding.

• HTCondor relies on a few obscure POSIX semantics for
user logs. No funny business such as FUSE
filesystems. Even NFS was finicky until the last 3-5
years.

DANGER! WARNING!

9

OS Tweaks
(for schedds with >10k jobs)
• Memory overcommit: In /etc/sysctl.conf, sys.vm.overcommit_memory=1

• Max socket backlog: In /etc/sysctl.conf, net.core.somaxconn=1024

• Max file descriptors: Set sys.fs.file-max to be greater than 500k (already is on
most OSes!)

• Max per-process file descriptors: Set nofile in /etc/security/limits.d.

• Not done commonly (see scaling talk).

• Maximum number of processes: Set nprocs in /etc/security/limits.d

• Only for hosts which do lots of DAGMan / local universe.

• Beware of iptables conntrack module: Consider blacklisting the conntrack
module if you need many TCP connections (see scaling talk).

Still relevant for some sites10

OS Tweaks - 8.4.x
• Starting in the latest series, HTCondor will now perform developer-

recommended reasonable kernel tunings on startup.

• These are selected so they should be safe for “anyone,” but do
touch some global settings.

• Sysadmins can turn this off (not recommended) or provide their
own overrides / additions (recommended).

• This was a contentious feature internally: the need for simplicity
versus reluctance to touch system settings.

• I suspect there is tuning of the approach left to do.

• Would love to hear feedback!

11

Host Firewalls and
Networking

• DNS: DNS is a mixed bag! HTCondor can work fine with- or without DNS; in fact, DNS failures (or
slow name resolution) often cause problems for submit services. Recommendations:

• Go all-in or all-out: don’t try to mix use of IP addresses in some cases and DNS in others.

• It is the host name. There should be one per host; if you use DNS, the hostname should match
the public DNS name for simplicity. If you need a more complex setup, the
NETWORK_HOSTNAME config option overrides the hostname detection logic.

• Consider your cluster’s dynamics: if there’s a small number (<50) of nodes and they won’t come
in and out of the cluster frequently, you may not need DNS.

• The worker nodes, central manager, and schedd need to be able to contact each other via the
network.

• I highly recommend setting USE_SHARED_PORT=true (in fact, the plan is to make this the future
default) throughout your pool. This will allow all HTCondor daemons to use the same inbound port,
TCP 9618.

• HTCondor has the ability to rewrite addresses (for TCP port-forwarding setups) and intelligently
manage multiple private and public networks. While this means HTCondor can work with very
adverse networking conditions, think twice before using; they can be extremely difficult to debug.

12

Host Firewalls and
Networking

• With shared port enabled, the firewall configuration becomes:

• Inbound connections: TCP 9618 from client hosts, the central manager, and worker
nodes.

• Outbound connections: Outbound connections are necessary to the central
manager and worker nodes.

• HTCondor phone home: By default, the HTCondor daemons report simple usage
statistics to UW via UDP. This is a requirement from the funding agencies;
consider leaving this on if you wish continued support of the software. For more,
see http://research.cs.wisc.edu/htcondor/privacy.html.

• By default, UDP updates are sent to the central manager; if desired, switch them
to TCP using UPDATE_COLLECTOR_WITH_TCP=true. All other outgoing
communication uses TCP.

• The CCB allows the worker nodes to be behind a separate stateful firewall or NAT (i.e.,
no inbound connectivity from the schedd). This is not typically used in site setups.

13

http://research.cs.wisc.edu/htcondor/privacy.html

Installing and Configuring
• Basics:

• Always install via RPM (debs); I strongly
discourage use of tarballs.

• Always maintain your configurations with
configuration management software such as
Puppet or Chef.

• Never edit condor_config or condor_config.local.
Always use the config.d directory.

14

Logging Considerations
• Consider enabling the AuditLog; this contains a concise log of who used

the schedd, what they did, and how they authenticated.

• Essential for security incidents!

• Explicitly determine your log retention policy; default is 10MB x 2 files
per log.

• Most large sites will want to retain more. I use 100MB x 10 files.

• Set the logfile name to SYSLOG to forward a HTCondor log to /dev/log.
Useful for sites that have an existing centralized log management
scheme and/or strict retention policies.

• In particular, sites should consider forwarding the AuditLog to syslog.

15

Monitoring - Host
• Host-level monitoring and alerting is critical,

especially if users have a login to the submit host.

• This is not HTCondor-specific; apply the security
protections you believe needed for a generic
login host.

• Users are quicker than your alert system;
typically, monitoring is best for post-crash
telemetry.

16

Monitoring - HTCondor
• All HTCondor daemons export 5-20 critical metrics in their

ClassAds.

• Recently, HTCondor delivered native integration with Ganglia.
This allows you to turn the above metrics into time series.

• When combined with host metrics (CPU usage, memory,
network activity), these are a powerful mechanism for
debugging problems.

• If your site doesn’t use Ganglia for monitoring, the daemon
can integrate with your system by invoking a “gmetric”
compatible command-line utility.

17

Accounting
• While condor_history is great, the logs do rotate eventually.

• Don’t wait until your boss asks about accounting usage to
discover this fact!

• If you set PER_JOB_HISTORY_DIR, then the schedd records
the job ClassAd into a unique file when it leaves the queue.

• Accounting can be done by reading each of these files and
uploading to a DB.

• Alternately, the PER_JOB_HISTORY_DIR captures the job
execution instances on the remote startds. Further, this can
be queried centrally (if you have admin privileges).

18

Accounting
• Recall condor_history can be invoked remotely.

• Via python bindings, one can collect the poolwide
history

• Looking to make this more efficient in 8.5.x.

• Similarly, python bindings can fetch
PER_JOB_HISTORY_DIR from schedds and startds.

• Consider taking this centrally collected data and pushing
it into ElasticSearch. Popular to do this + Kibana.

Extensive CMS-specific example: 
https://github.com/bbockelm/cms-htcondor-es19

https://github.com/bbockelm/cms-htcondor-es

Configuration Knobs
to investigate

• SYSTEM_PERIODIC_REMOVE / SYSTEM_PERIODIC_HOLD: Expression
to either remove or hold “malformed” jobs.

• Check out SYSTEM_PERIODIC_XXX_REASON too!

• MAX_JOBS_RUNNING / MAX_JOBS_SUBMITTED: Limit the number of
jobs running / submitted to prevent users from pushing the schedd into
swap.

• FILE_TRANSFER_DISK_LOAD_THROTTLE: If you are using HTCondor
transfer mechanisms, this limits the amount of disk load HTCondor places
on the system (suggestion: set to N for a host with N spinning disks).

• MAX_TRANSFER_{INPUT,OUTPUT}_MB: Avoid transferring excessive
amounts of data per job.

20

NEW - Managing User Job
ClassAds

• Historically, the job ClassAd “belongs” to the user. All attributes
except Owner could be modified by the user via condor_q.
However,

• Group accounting information is taken from ad.

• Some attributes (X509 certificate DN) are used by admins for
policy decisions.

• In 8.3.x, we introduced SUBMIT_REQUIREMENTS: you can force
jobs to match certain constraints

• In 8.5.2, we introduced protected attributes: once set, can only
be changed by the sysadmin.

21

Managing User ClassAds
• Finally, the big hammer: custom ClassAd functions.

These can be written in python (easy) or C++
(hard).

• Use sparingly (i.e., in SUBMIT_REQUIREMENTS
but not job’s REQUIREMENTS).

• Must evaluate quickly; no side-effects, no state.

• If it must access a remote service, cache
aggressively.

22

SUBMIT_REQUIREMENTS
Example

SCHEDD.CLASSAD_USER_PYTHON_MODULES=my_utils
SCHEDD_ENVIRONMENT=“PYTHONPATH=/path/to/my_modules”
SUBMIT_REQUIREMENT_NAMES = CHECKTODD
SUBMIT_REQUIREMENT_CHECKTODD = isUserTodd(Owner)
SUBMIT_REQUIREMENT_CHECKTODD_REASON = \
 strcat(“This is “, Owner, “ not Todd!”)

Config snippet:

Python code example:
import classad

def isUserTodd(user, state={}):
 return user == “todd”

classad.register(isUserTodd)23

SUBMIT_REQUIREMENTS 
Example

$ condor_run echo "Hello world"
Submitting job(s).
ERROR: Failed to commit job submission into the queue.
ERROR: This is bbockelm not Todd!
Failed to submit Condor job.

24

Setting up the User
Environment

• How does a user submit a job? It’s a bit of a religious argument.

• School of thought #1: Make users learn condor_submit. There’s tons of documentation “on the internet”, allows
users to fully unlock the power of condor_submit, and is no-maintenance.

• School of thought #1.1: Write a small wrapper around condor_submit to “helpfully” fix obvious errors in files or
set a few site-specific defaults.

• Alternately, can control some defaults from the user environment. I.e., add the following to /etc/profile.d/
condor.sh:

• export _CONDOR_AccountingGroup=\”local.`id -gn`.`id -un`\”

• Periodically check schedd-side to see if a user is trying to game the system.

• School of thought #2: Any condor_* command is too damn hard to use. Replace it with a simpler site-specific
interface and train them to use this.

• Alternately, use condor_qsub because you like PBS-style scripts better!

• Note: wrapper scripts require the users to play along. Do not be surprised to find they bypass your script
when python bindings are used.

• School of through #2.1: Any command line is too hard for users; they only access the system through a
webapp.

25

User Environments -
Automating attribute settings
• Easy: Utilize SUBMIT_ATTRS. Add to the config file:

• Medium: Use MODIFY_REQUEST_EXPR_* to modify a user’s
request_* at the startd or JOB_DEFAULT_* to modify at
condor_submit.

• Medium: Use SCHEDD_ROUND_ATTR_ to round up arbitrary
attributes at the schedd.

• Medium-hard: Write a wrapper around your submit script.

• Hard: Use JobRouter to enforce policy schedd-side.

JobIsGrid = true
SUBMIT_ATTRS = $(SUBMIT_ATTRS), JobIsGrid

26

Upcoming Automation
• For automating attribute values, in 8.5.x, we hope

to:

• Make SUBMIT_ATTRS work schedd-side.

• Allow attributes to be evaluated at submit time.

• Re-introduce the “unexpanded” state. This
causes the schedd to not consider the job until it
has been transformed by the JobRouter.

27

Tweaks
• Ideas that make user’s life better:

• Use the custom condor_q / condor_status print
formats for your site.

• Take advantage of ~/.condor/user_config (user-
specific config file, like ~/.bashrc); for example, you
can created this file on first login with a PAM module
to lock the user to a specific schedd.

• Customize MOTD to tell the user a summary of their
jobs on login.

28

Print Formats
SELECT
 Name AS Name WIDTH -18
 OSG_Resource AS Resource WIDTH -18
 OSG_BatchSystems AS Batch WIDTH -8
 HTCondorCEVersion AS CEVer WIDTH -5
 split(condorversion)[1] AS CondorVer
 DaemonStartTime AS Uptime PRINTAS ACTIVITY_TIME
 grid_resource AS Resource
SUMMARY NONE

29

Print Formats

30

User education and training
• A little bit of user education goes a long way!

• While we have dozens of “circuit breakers” in HTCondor to
prevent more common mistakes, it helps if the user doesn’t
make them in the first place.

• A handful of topics to make your life easier (beyond the “standard
intro”):

• How to avoid invoking condor_q?

• How long to wait for a job to start / what to do when a job is idle?

• What’s an “excessive” number of jobs in the queue?

31

User Education -  
Userlog files

• HTCondor users love to write the following code to submit or
monitor jobs:

• This is unnecessarily wasteful of schedd resources; if enough users
do the same thing, the schedd may become unresponsive.

• Instead, take advantage of the user logs which are typically
available locally and record the job lifetime.

• Users don’t even need to parse them - utilize condor_wait
instead!

• condor_dagman will do this automatically for you!

while true
 if [`condor_q bbockelm -run | wc -l` -lt 100]; then
 condor_submit some_file
 fi
 sleep 1
done

32

Parting Thoughts
• In the latest stable series, the best scalability

tunings come out-of-the-box.

• Building a successful submit host is mostly about
how users interact with condor - filesystems & IO,
inserting appropriate default attributes.

• Make sure you have both accounting and
monitoring in the planning from the beginning.

33

Questions?

34

