

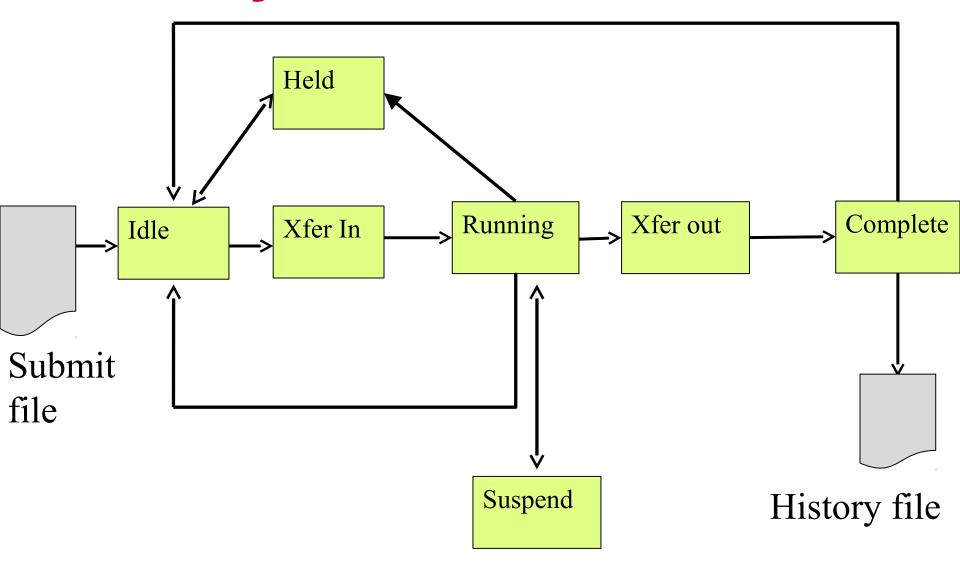
HTCondor Administration Basics

Greg Thain
Center for High Throughput Computing

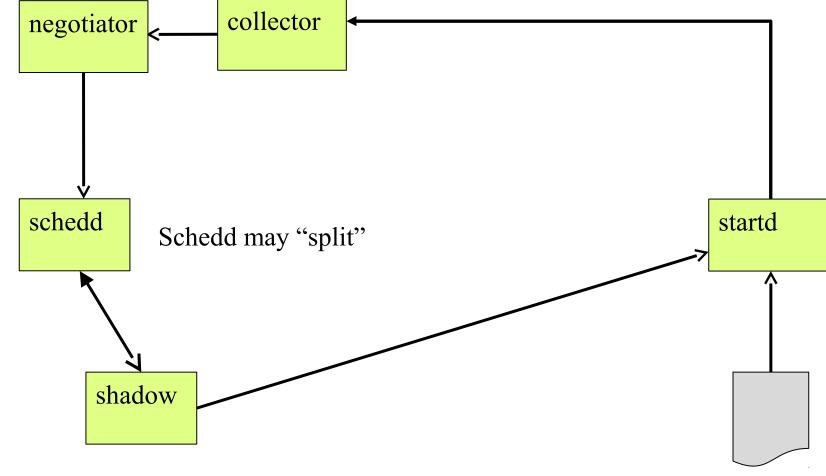
Overview

- > HTCondor Architecture Overview
- Configuration and other nightmares
- Setting up a personal condor
- Setting up distributed condor
- Minor topics

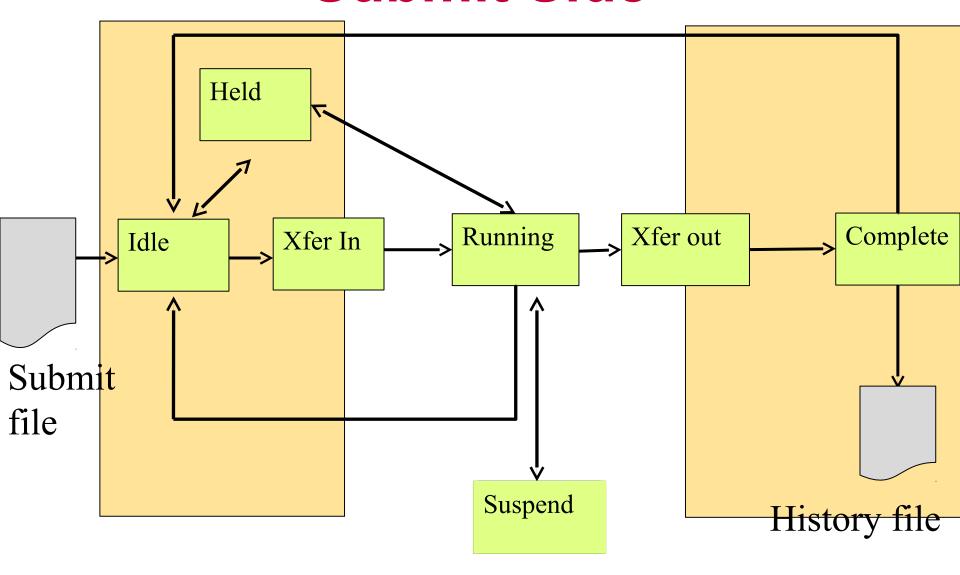
Two Big HTCondor Abstractions


Jobs

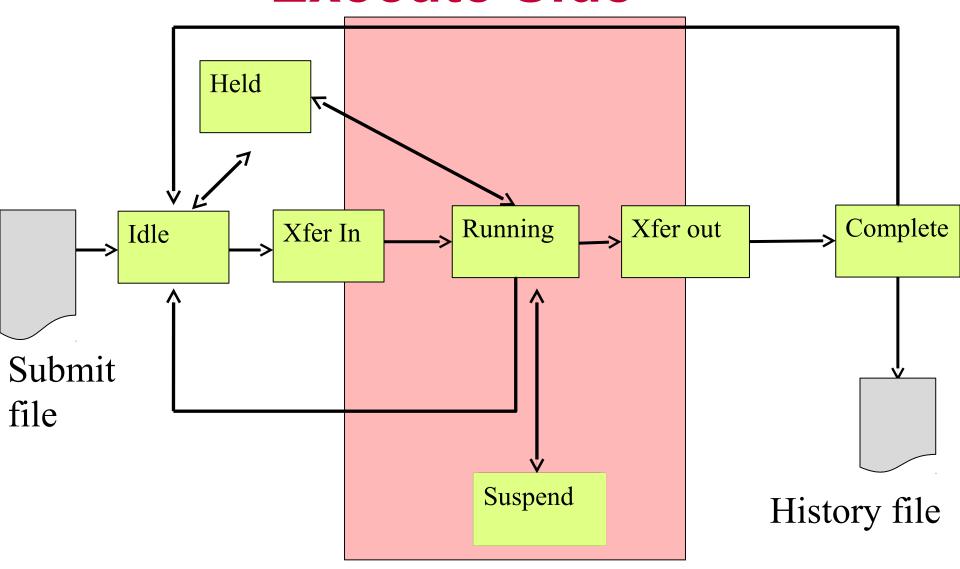
Machines


Life cycle of HTCondor Job

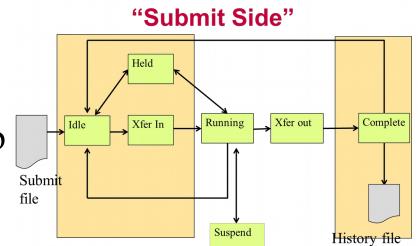
Life cycle of HTCondor Machine



Config file


"Submit Side"

"Execute Side"



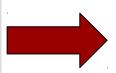
The submit side

- Submit side managed by 1 condor schedd process
- And one shadow per running job
 - condor shadow process
- The Schedd is a database

- Submit points can be performance bottleneck
- Usually a handful per pool

In the Beginning...

```
universe = vanilla
executable = compute
request memory = 70M
arguments = \$(ProcID)
should transfer input = yes
output = out.$(ProcID)
error = error.$(ProcId)
+IsVerySpecialJob = true
Queue
```


HTCondor Submit file

From submit to schedd

```
universe = vanilla
executable = compute
request_memory = 70M
arguments = $(ProcID)
should_transfer_input = yes
output = out.$(ProcID)
error = error.$(ProcId)
+IsVerySpecialJob = true
Queue
```



```
JobUniverse = 5

Cmd = "compute"

Args = "0"

RequestMemory = 70000000

Requirements = Opsys == "Li..

DiskUsage = 0

Output = "out.0"

IsVerySpecialJob = true
```

condor_submit submit_file

Submit file in, Job classad out

Sends to schedd

man condor submit for full details

Other ways to talk to schedd

Python bindings, SOAP, wrappers (like DAGman)

Condor_schedd holds all jobs

One pool, Many schedds

condor_submit –name chooses

Owner Attribute:

need authentication

Schedd also called "q" not actually a queue

```
JobUniverse = 5
Owner = "gthain"
JobStatus = 1
NumJobStarts = 5
Cmd = "compute"
Args = "0"
RequestMemory = 7000000
Requirements = Opsys == "Li..
DiskUsage = 0
Output = "out.0"
IsVerySpecialJob = true
```


Condor_schedd has all jobs

- In memory (big)
 - condor_q expensive
- And on disk
 - Fsync's often
 - Monitor with linux
- Attributes in manual
- condor_q -l job.id
 - e.g. condor_q -l 5.0

```
JobUniverse = 5
Owner = "gthain"
JobStatus = 1
NumJobStarts = 5
Cmd = "compute"
Args = "0"
RequestMemory = 70000000
Requirements = Opsys == "Li..
DiskUsage = 0
Output = "out.0"
IsVerySpecialJob = true
```


What if I don't like those Attributes?

Write a wrapper to condor_submit

> SUBMIT_ATTRS

> condor gedit

ClassAds: The *lingua franca* of HTCondor

What are ClassAds?

ClassAds is a language for objects (jobs and machines) to

- Express attributes about themselves
- Express what they require/desire in a "match" (similar to personal classified ads)

Structure: Set of attribute name/value pairs, where the value can be a literal or an expression. Semi-structured, no fixed schema.

Example

Pet Ad

```
Type = "Dog"
Requirements =
    DogLover =?= True
Color = "Brown"
Price = 75
Sex = "Male"
AgeWeeks = 8
Breed = "Saint Bernard"
Size = "Very Large"
Weight = 27
```

Buyer Ad

```
AcctBalance = 100
DogLover = True
Requirements =
  (Type == "Dog") &&
  (TARGET.Price <=
    MY.AcctBalance) &&
  ( Size == "Large" ||
    Size == "Very Large" )
Rank =
  100* (Breed == "Saint Bernard") - Price</pre>
```


ClassAd Values

Literals

 Strings ("RedHat6"), integers, floats, boolean (true/false), ...

Expressions

- Similar look to C/C++ or Java : operators, references, functions
- References: to other attributes in the same ad, or attributes in an ad that is a candidate for a match
- Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all work as expected
- Built-in Functions: if/then/else, string manipulation, regular expression pattern matching, list operations, dates, randomization, math (ceil, floor, quantize,...), time functions, eval, ...

Four-valued logic

- ClassAd Boolean expressions can return four values:
 - True
 - False
 - Undefined (a reference can't be found)
 - Error (Can't be evaluated)
- Undefined enables explicit policy statements in the absence of data (common across administrative domains)
- Special meta-equals (=?=) and meta-not-equals (=!=) will never return Undefined

```
[
  HasBeer = True
  GoodPub1 = HasBeer == True
  GoodPub2 = HasBeer =?= True
]

[
  GoodPub1 = HasBeer == True
  GoodPub2 = HasBeer =?= True
]
```


ClassAd Types

- > HTCondor has many types of ClassAds
 - A "Job Ad" represents a job to Condor
 - A "Machine Ad" represents a computing resource
 - Others types of ads represent other instances of other services (daemons), users, accounting records.

The Magic of Matchmaking

- Two ClassAds can be matched via special attributes: Requirements and Rank
- Two ads match if both their Requirements expressions evaluate to True
- Rank evaluates to a float where higher is preferred; specifies the which match is desired if several ads meet the Requirements.
- Scoping of attribute references when matching
 - MY.name Value for attribute "name" in local ClassAd
 - TARGET.name Value for attribute "name" in match candidate ClassAd
 - Name Looks for "name" in the local ClassAd, then the candidate ClassAd

Example

Pet Ad

```
Type = "Dog"
Requirements =
    DogLover =?= True
Color = "Brown"
Price = 75
Sex = "Male"
AgeWeeks = 8
Breed = "Saint Bernard"
Size = "Very Large"
Weight = 27
```

Buyer Ad

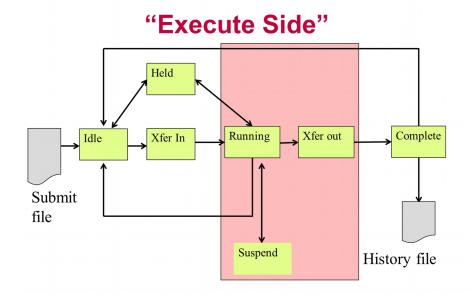
```
AcctBalance = 100
DogLover = True
Requirements =
  (Type == "Dog") &&
  (TARGET.Price <=
    MY.AcctBalance) &&
  ( Size == "Large" ||
    Size == "Very Large" )
Rank =
  100* (Breed == "Saint Bernard") - Price</pre>
```


Back to configuration...

Configuration of Submit side

Not much policy to be configured in schedd

- Mainly scalability and security
- MAX_JOBS_RUNNING
- > JOB_START_DELAY
- MAX_CONCURRENT_DOWNLOADS
- MAX_JOBS_SUBMITTED


The Execute Side

Primarily managed by condor_startd process

With one condor_starter per running jobs

Sandboxes the jobs

Usually many per pool (support 10s of thousands)

Startd also has a classad

- Condor makes it up
 - From interrogating the machine
 - And the config file
 - And sends it to the collector
- condor_status [-l]
 - Shows the ad
- condor_status –direct daemon
 - Goes to the startd

Condor_status -I machine

```
OpSys = "LINUX"
CustomGregAttribute = "BLUE"
OpSysAndVer = "RedHat6"
TotalDisk = 12349004
Requirements = (START)
UidDomain = "cheesee.cs.wisc.edu"
Arch = "X86 64"
StartdIpAddr = "<128.105.14.141:36713>"
RecentDaemonCoreDutyCycle = 0.000021
Disk = 12349004
Name = "slot1@chevre.cs.wisc.edu"
State = "Unclaimed"
Start = true
Cpus = 32
```


One Startd, Many slots

- HTCondor treats multicore as independent slots
- Start can be configured to:
 - Only run jobs based on machine state
 - Only run jobs based on other jobs running
 - Preempt or Evict jobs based on policy
- A whole talk just on this

Configuration of startd

- Mostly policy, whole talk on that
- Several directory parameters
- EXECUTE where the sandbox is

- CLAIM_WORKLIFE
 - How long to reuse a claim for different jobs

The "Middle" side

- There's also a "Middle", the Central Manager:
 - A condor_negotiator
 - Provisions machines to schedds
 - A condor_collector
 - Central nameservice: like LDAP
 - condor_status queries this
- Please don't call this "Master node" or head
- Not the bottleneck you may think: stateless

Responsibilities of CM

> Pool-wide scheduling policy resides here

- Scheduling of one user vs another
- Definition of groups of users
- Definition of preemption

The condor_master

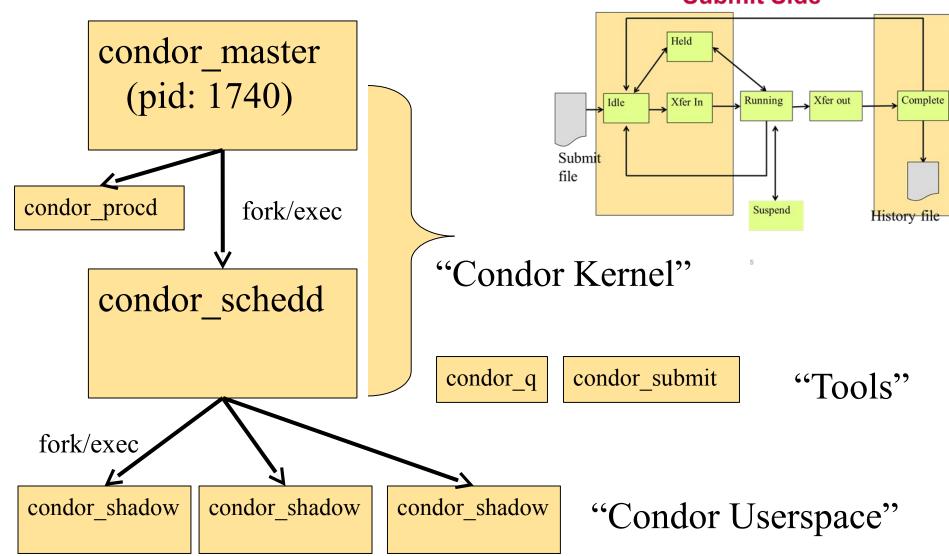
Every condor machine needs a master

Like "systemd", or "init"

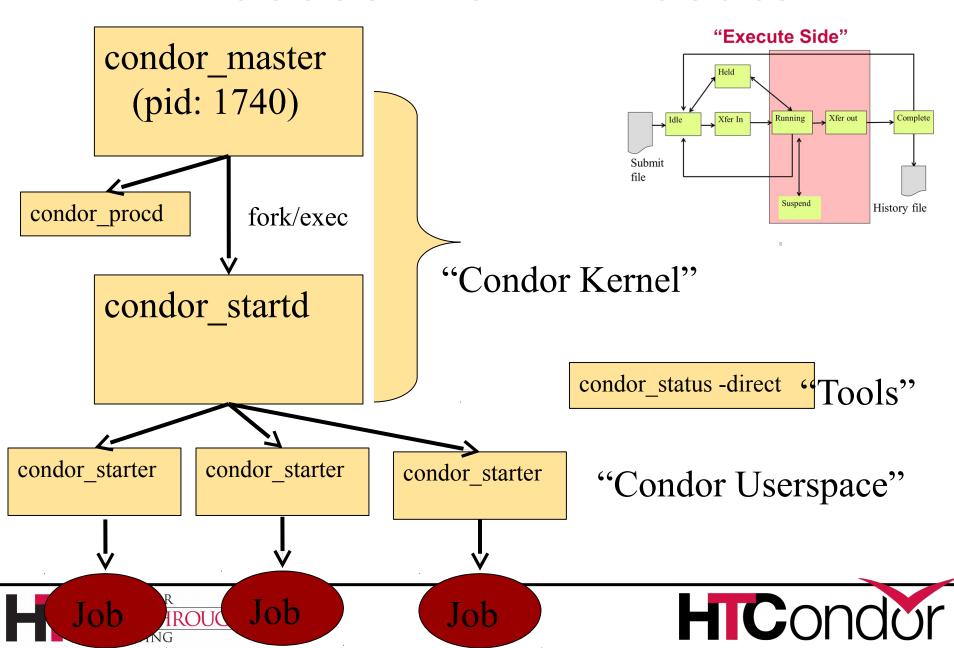
- > Starts daemons, restarts crashed daemons
- Tunes machine for condor

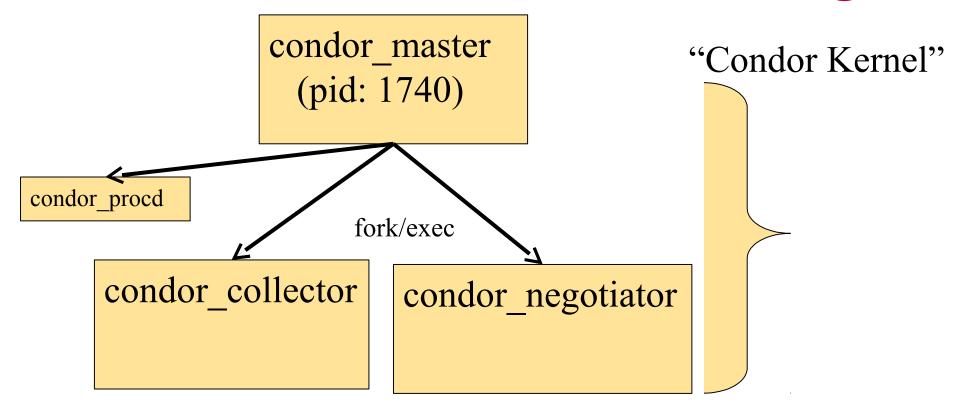
Quick Review of Daemons

condor_master: runs on all machine, always


condor_schedd: runs on submit machine condor_shadow: one per job

condor_startd: runs on execute machine condor_starter: one per job condor_negotiator/condor_collector


Process View "Submit Side"



Process View: Execute

Process View: Central Manager

condor_userprio

"Tools"

Condor Installation Basics

Let's Install HTCondor

- Either with tarball
 - tar xvf htcondor-8.2.3-redhat6
- Or native packages

```
wget
http://research.cs.wisc.edu/htcondor/yum/repo.d/h
tcondor-stable-rhel6.repo
get
```

http://research.cs.wisc.edu/htcondor/yum/RPM-GPG-

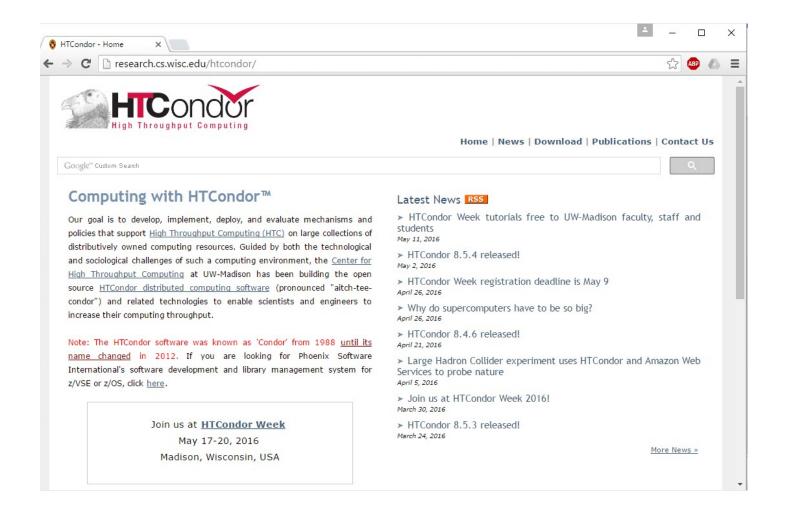
KEY-HTCondor

```
rpm -import RPM_GPG-KEY-HTCondor
```

Yum install htcondor

Version Number Scheme

- Major.minor.release
 - If minor is even (a.b.c): Stable series
 - Very stable, mostly bug fixes
 - Current: 8.4
 - Examples: 8.2.5, 8.0.3
 - 8.6.0 coming soon to a repo near you
 - If minor is odd (a.b.c): Developer series
 - New features, may have some bugs
 - Current: 8.5
 - Examples: 8.3.2,
 - 8.5.5 almost released


The Guarantee

- All minor releases in a stable series interoperate
 - E.g. can have pool with 8.4.0, 8.4.1, etc.
 - But not WITHIN A MACHINE:
 - Only across machines
- The Reality
 - We work really hard to do better
 - 8.4 with 8.2 with 8.5, etc.
 - Part of HTC ideal: can never upgrade in lock-step

http://htcondorproject.org

Let's Make a Pool

> First need to configure HTCondor

> 1100+ knobs and parameters!

Don't need to set all of them...

Default file locations

```
BIN = /usr/bin
SBIN = /usr/sbin
LOG = /var/condor/log
SPOOL = /var/lib/condor/spool
EXECUTE = /var/lib/condor/execute
CONDOR CONFIG =
/etc/condor/condor config
```


Configuration File

- (Almost) all configure is in files, "root"
 CONDOR_CONFIG env var
 /etc/condor/condor_config
- This file points to others
- All daemons share same configuration
- Might want to share between all machines (NFS, automated copies, puppet, etc)

Configuration File Syntax

```
# I'm a comment!
CREATE CORE FILES=TRUE
MAX JOBS RUNNING = 50
# HTCondor ignores case:
log=/var/log/condor
# Long entries:
collector host=condor.cs.wisc.edu,\
    secondary.cs.wisc.edu
```


Other Configuration Files

- > LOCAL CONFIG FILE
 - Comma separated, processed in order

```
LOCAL_CONFIG_FILE = \
   /var/condor/config.local,\
/shared/condor/config.$(OPSYS)
```

- > LOCAL_CONFIG_DIR
 - Files processed IN LEXIGRAPHIC ORDER

```
LOCAL_CONFIG_DIR = \
/etc/condor/config.d
```


Configuration File Macros

- You reference other macros (settings) with:
 - $^{\bullet}$ A = \$(B)
 - SCHEDD = \$(SBIN)/condor_schedd
- Can create additional macros for organizational purposes

Configuration File Macros

Can append to macros:

Don't let macros recursively define each other!

$$B=$(A)$$

Configuration File Macros

- Later macros in a file overwrite earlier ones
 - B will evaluate to 2:

$$B=$(A)$$

Config file defaults

- CONDOR_CONFIG "root" config file:
 - /etc/condor/condor_config
- Local config file:
 - /etc/condor/condor_config.local
- Config directory
 - /etc/condor/config.d

Config file recommendations

- For "system" condor, use default
 - Global config file read-only
 - /etc/condor/condor_config
 - All changes in config.d small snippets
 - /etc/condor/config.d/05some_example
 - All files begin with 2 digit numbers

Personal condors elsewhere

condor_config_val

- condor_config_val [-v] <KNOB_NAME>
 - Queries config files
- condor_config_val -set name value
- condor_config_val -dump

- Environment overrides:
- > export _condor_KNOB_NAME=value
 - Trumps all others (so be careful)

condor_reconfig

- Daemons long-lived
 - Only re-read config files condor_reconfig command
 - Some knobs don't obey re-config, require restart
 - DAEMON_LIST, NETWORK_INTERFACE
- > condor_restart

Got all that?

Let's make a pool!

- "Personal Condor"
 - All on one machine:
 - submit side IS execute side
 - Jobs always run
- Use defaults where ever possible
- Very handy for debugging and learning

Minimum knob settings

Role

What daemons run on this machine

CONDOR_HOST

Where the central manager is

Security settings

Who can do what to whom?

Other interesting knobs

```
LOG = /var/log/condor
```

Where daemons write debugging info

```
SPOOL = /var/spool/condor
```

Where the schedd stores jobs and data

```
EXECUTE = /var/condor/execute
```

Where the startd runs jobs

Minimum knobs for personal Condor

In /etc/condor/config.d/50PC.config

```
# All daemons local
```

Use ROLE : Personal

```
CONDOR HOST = localhost
```


Does it Work?

\$ condor status Error: communication error CEDAR: 6001: Failed to connect to <128.105.14.141: 4210> \$ condor submit ERROR: Can't find address of local schedd \$ condor q Error: Extra Info: You probably saw this error because the condor schedd is not running on the machine you are trying to guery...

Checking...

```
$ ps auxww | grep [Cc]ondor
$
```


Starting Condor

- condor_master –f
- > service start condor


```
$ ps auxww | grep [Cc]ondor
condor 19534 50380
                                11:19
                                        0:00 condor master
                           Ss
      19535
            21692
                            S 11:19
                                        0:00 condor procd -A ...
root
condor
      19557
               69656
                           Ss 11:19
                                       0:00 condor collector -f
condor
      19559 51272
                           Ss
                              11:19
                                       0:00 condor startd -f
condor 19560 71012
                           Ss 11:19
                                      0:00 condor schedd -f
                                       0:00 condor negotiator -f
condor 19561
              50888
                           Ss 11:19
```

Notice the UID of the daemons

Quick test to see it works

```
$ condor status
# Wait a few minutes...
$ condor status
Name
                 OpSys
                         Arch State Activity LoadAv Mem
slot1@chevre.cs.wi LINUX
                            X86 64 Unclaimed Idle 0.190 20480
                            X86 64 Unclaimed Idle
slot2@chevre.cs.wi LINUX
                                                      0.000 20480
                            X86 64 Unclaimed Idle
                                                      0.000 20480
slot3@chevre.cs.wi LINUX
                            X86 64 Unclaimed Idle 0.000 20480
slot4@chevre.cs.wi LINUX
-bash-4.1$ condor q
-- Submitter: gthain@chevre.cs.wisc.edu : <128.105.14.141:35019> :
chevre.cs.wisc.edu
TD
        OWNER
                        SUBMITTED
                                     RUN TIME ST PRI SIZE CMD
0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
$ condor restart # just to be sure...
```


Some Useful Startd Knobs

- > NUM CPUS = X
 - How many cores condor thinks there are
- \rightarrow MEMORY = M
 - How much memory (in Mb) there is
- > STARTD_CRON_...
 - Set of knobs to run scripts and insert attributes into startd ad (See Manual for full details).

Brief Diversion into daemon logs

- Each daemon logs mysterious info to file
- \$(LOG)/DaemonNameLog
- Default:
 - /var/log/condor/SchedLog
 - /var/log/condor/MatchLog
 - /var/log/condor/StarterLog.slotX
- Experts-only view of condor

Let's make a "real" pool

- Distributed machines makes it hard
 - Different policies on each machines
 - Different owners
 - Scale

Most Simple Distributed Pool

- Requirements:
 - No firewall
 - Full DNS everywhere (forward and backward)
 - We've got root on all machines

- > HTCondor doesn't require any of these
 - (but easier with them)

What UID should jobs run as?

- Three Options (all require root):
 - Nobody UID
 - Safest from the machine's perspective
 - The submitting User
 - Most useful from the user's perspective
 - May be required if shared filesystem exists
 - A "Slot User"
 - Bespoke UID per slot
 - Good combination of isolation and utility

UID_DOMAIN SETTINGS

```
UID_DOMAIN = \
same_string_on_submit
TRUST_UID_DOMAIN = true
SOFT_UID_DOMAIN = true
```

If UID_DOMAINs match, jobs run as user, otherwise "nobody"

Slot User

```
SLOT1_USER = slot1
SLOT2_USER = slot2
```

• • •

```
STARTER_ALOW_RUNAS_OWNER = false
EXECUTE_LOGIN_IS_DEDICATED=true
```

Job will run as slotX Unix user

FILESYSTEM_DOMAIN

- HTCondor can work with NFS
 - But how does it know what nodes have it?
- WhenSubmitter & Execute nodes share
 - FILESYSTEM_DOMAIN values
 e.g FILESYSTEM DOMAIN = domain.name
- Or, submit file can always transfer with
 - should transfer files = yes
- > If jobs always idle, first thing to check

3 Separate machines

Central Manager

Execute Machine

Submit Machine

Central Manager

```
Use ROLE: CentralManager
CONDOR HOST = cm.cs.wisc.edu
ALLOW WRITE = *.cs.wisc.edu
# to use a non-default port
# default is 9618
#COLLECTOR HOST=$(CONDOR HOST):1234
# ^- set this for ALL machines...
```


Submit Machine

```
Use ROLE : submit
CONDOR_HOST = cm.cs.wisc.edu
ALLOW_WRITE = *.cs.wisc.edu
UID_DOMAIN = cs.wisc.edu
FILESYSTEM DOMAIN = cs.wisc.edu
```


Execute Machine

```
Use ROLE: Execute
CONDOR HOST = cm.cs.wisc.edu
ALLOW WRITE = *.cs.wisc.edu
UID DOMAIN = cs.wisc.edu
FILESYSTEM DOMAIN = cs.wisc.edu
# default is
#FILESYSTEM DOMAIN=$ (FULL HOSTNAME)
```


Now Start them all up

- Does order matter?
 - Somewhat: start CM first
- How to check:
- Every Daemon has classad in collector
 - condor_status -schedd
 - condor_status -negotiator
 - condor_status -any

condor_status -any

МуТуре	TargetType	Name
Collector	None	Test <u>Pool@cm.cs.wisc.edu</u>
Negotiator	None	cm.cs.wisc.edu
DaemonMaster	None	cm.cs.wisc.edu
Scheduler	None	submit.cs.wisc.edu
DaemonMaster	None	submit.cs.wisc.edu
DaemonMaster	None	wn.cs.wisc.edu
Machine	Job	slot1@wn.cs.wisc.edu
Machine	Job	slot2@wn.cs.wisc.edu
Machine	Job	slot3@wn.cs.wisc.edu
Machine	Job	slot4@wn.cs.wisc.edu

Debugging the pool

condor_q / condor_status

> condor_ping ALL -name machine

- Or
- condor_ping ALL -addr '<127.0.0.1:9618>'

What if a job is always idle?

- Check userlog may be preempted often
- run condor_q -better-analyze job_id

Whew!

Condor statistics

- > condor_status -direct -schedd statistics 2
- (all kinds of output), mostly aggregated
- NumJobStarts, RecentJobStarts, etc.
- See manual for full details

DaemonCoreDutyCycle

Most important statistic

Measures time not idle

> If over 95%, daemon is probably saturated

Disaggregated stats

SCHEDD_COLLECT_STATS_FOR_Gthain = (Owner=="gthain")

Schedd will maintain distinct sets of status per owner, with name as prefix:

GthainJobsCompleted = 7

GthainJobsStarted = 100

Even better

SCHEDD_COLLECT_STATS_BY_Owner = Owner

For all owners, collect & publish stats:

gthainJobsStarted = 7 tannenbaJobsStarted = 100

Speeds, Feeds, Rules of Thumb

- > HTCondor scales to 100,000s of machines
 - With a lot of work
 - Contact us, see wiki page

•

Without Heroics:

- Your Mileage may vary:
 - Shared File System vs. File Transfer
 - WAN vs. LAN
 - Strong encryption vs none
 - Good autoclustering
- A single schedd can run at 50 Hz
- Schedd needs 500k RAM for running job
 - 50k per idle jobs
- Collector can hold tens of thousands of ads

condor_off

- Three kinds for submit and execute
- -fast:
 - Kill all jobs immediate, and exit
- -gracefull
 - Give all jobs 10 minutes to leave, then kill
- -peaceful
 - Wait forever for all jobs to exit

For more info

> http://htcondorproject.org

htcondor-users email list

Talk to us!

Thank you!

