
HTCondor Security Basics
HTCondor Week, Madison 2016

Zach Miller (zmiller@cs.wisc.edu)

Center for High Throughput Computing
Department of Computer Sciences
University of Wisconsin-Madison

› What are the threats?

› Who do you trust?

› What are the mechanisms?

› Other security concerns?

2

Overview

› The purpose of HTCondor is to accept
arbitrary code from users and run it on a
large number of machines

Threats

3

› The purpose of HTCondor is to accept
arbitrary code from users and run it on a
large number of machines

› The purpose of a botnet is to take arbitrary
code and run it on a large number of
machines

Threats

4

› So what’s the difference?

› You wish to prevent unauthorized access

› Ultimately, it just comes down to who can
use your pool, and how they can use it.

Threats

5

Basic Concepts

› “Who can use your pool” is really two
concepts:

› The “Who” is authentication

› The “can use” is authorization

Basic Concepts

› Authentication is finding out WHO some
entity is.

› How is this done?
Common methods:

• Present a secret that only you should know
• Perform some action that only you can do
• Present a credential that only you could have

Basic Concepts

› Authorization is deciding what someone is
allowed to do.

› You must know who they are before you
can decide this!

Basic Concepts

› I’m using “they” pretty loosely here.

› “They” could be:
A user
A machine
An agent/daemon/service

Basic Concepts

› In the context of an HTCondor pool:
You want only machines that you trust to be in

the pool
You want only people you trust to submit jobs

› HTCondor relies on trusting the “root” user
of a machine

› If this is compromised, all bets are off

› HTCondor daemons trust each other

› You need to trust your friendly HTCondor
administrator

Assumptions of Trust

11

› How about users?

› HTCondor places some restrictions on
users:
zmiller cannot submit, remove, or manipulate

jobs belonging to another user
› But ”bad” users can still cause problems
Running fork bomb: while(1) { fork() }
Intentionally interfering with the system

Assumptions of Trust

12

› So, users are trusted to some degree

› Preventing every possible bad behavior
makes the system too cumbersome for
good users
Security is always a balancing act with

usability
› Decide how much you want to prevent

versus punish

Assumptions of Trust

13

› SUBMIT_REQUIREMENT allows the
administrator to restrict what jobs are able
to enter the queue

› Can be used to prevent users from lying
about what groups they belong to:

SUBMIT_REQUIREMENT_NAMES = GROUP1

SUBMIT_REQUIREMENT_GROUP1= (AcctGroup =!= “group1”) ||
(AcctGroup =?= “group1” && (Owner==“zmiller” || Owner==“tannenba”))

SUBMIT_REQUIREMENT_GROUP1_REASON=“User not in group1”

Restricting Users

14

› SUBMIT_REQUIREMENT allows the
administrator to restrict what jobs are able
to enter the queue

› Can be used to allow only certain
executable files, number of CPUs
requested for a job, anything else that is
part of the Job ClassAd

Restricting Users

15

Authentication

› When users submit jobs, HTCondor
authenticates them

› The HTCondor SCHEDD daemon now
“owns” the jobs, and acts on their behalf.

Authentication

› So how can we trust the SCHEDD?

› Daemon-to-daemon authentication

Authentication

› For a secure pool, both users and
HTCondor daemons must authenticate
themselves

› HTCondor supports several mechanisms:
File System
Password
Kerberos
SSL
GSI

› In addition to authenticating network
connections, you may also wish to use:

› Integrity Checks (MD5)
Allows HTCondor to know if traffic has been

tampered with
› Encryption (3DES, Blowfish)
Allows HTCondor to transmit encrypted data

so it cannot be spied on while in transit

Other Security Mechanisms

19

SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = Kerberos
SEC_DEFAULT_ENCRYPTION = REQUIRED
SEC_DEFAULT_INTEGRITY = REQUIRED

Example “Strong” Configuration

20

› When first contacting each other,
HTCondor daemons have a short
negotiation to find out which mechanisms
are support and what features are required
for the connection

Security Negotiation

21

client
server

I want to submit a job

You must authenticate w/ kerberos

KERBEROS
normal submit protocol

Security Negotiation

› Policy Reconciliation Example:

CLIENT POLICY
SEC_DEFAULT_ENCRYPTION = OPTIONAL
SEC_DEFAULT_INTEGRITY = OPTIONAL
SEC_DEFAULT_AUTHENTICATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD

SERVER POLICY
SEC_DEFAULT_ENCRYPTION = REQUIRED
SEC_DEFAULT_INTEGRITY = REQUIRED
SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

RECONCILED POLICY
ENCRYPTION = YES
INTEGRITY = YES
AUTHENTICATION = YES
METHODS = SSL

› I’m going to skip the detailed configuration
of each particular security mechanism.

› Security is not one-size fits all

› If you are interested in details, please
schedule some “office hours” with me to
discuss.

Security Configuration

23

› Are your condor_config files secured?

› They should be owned and only modifiable
by root.

› If you use a config directory, make sure
only root can create files in it

Configuration Security

24

› HTCondor can allow configuration changes
using a command-line tool:
condor_config_val –set Name Value

› However, this behavior is off by default and
needs to be enabled on a case-by-case
basis for each config parameter… use
carefully only if you really need it

Configuration Security

25

› HTCondor typically runs “as root”

› Why?
Impersonating users
Process isolation
Reading secure credentials

› When it isn’t actively using root, it switches
effective UID to another user (“condor”)

HTCondor Privilege

26

› HTCondor will never launch a user job as
root. There is a “circuit breaker” at the
lowest level to prevent it.

› If not using system credentials, the Central
Manager can run without root priv

› Let’s examine some different Startd
configurations

HTCondor Privilege

27

› Startds have a few different options for
running jobs:

› Run jobs as the submitting user
› Run jobs as the user “nobody”
Allows jobs to interfere with one another

› Run jobs as a dedicated user per slot
Keeps jobs running as a low-privilege user
Isolates jobs from one another
Makes it easy to clean up after a job

StartD Configurations

28

› Allows HTCondor daemons to be run
without root privilege, yet running jobs can
still assume the UID of the submitting user

› Uses GSI credentials to authenticate

› Very useful for glidein jobs

glexec

29

› Even if that admin has not required
encryption for all network connections, user
jobs can specify per-file for both input and
output if the files should be encrypted:
Encrypt_Input_Files = file1, *.dat
Encrypt_Output_Files = data.private

Encrypted File Transfer

30

› If you are using Linux with ecryptfs
installed, you can have HTCondor encrypt
the execute directory on disk, offering extra
protection of sensitive data.

› Can be enabled pool-wide by the admin:
ENCRYPT_EXECUTE_DIRECTORY = True

› Per-job in the submit file:
Encrypt_Execute_Directory = True

Encrypt Execute Directory

31

› HTCondor has been assessed by an
independent research group.

› That was many years ago. Another audit
will be coming “soon”

› Our vulnerability reporting process is
documented and vulnerability reports
publicly available:

› http://research.cs.wisc.edu/htcondor/security/

Vulnerabilities

32

http://research.cs.wisc.edu/htcondor/security/

› Schedule “office hours” this week

› Email the htcondor-users mailing list and if
your question is security related I will
(likely) respond

› Email me directly

Questions?

33

	HTCondor Security Basics�HTCondor Week, Madison 2016
	Overview
	Threats
	Threats
	Threats
	Basic Concepts
	Basic Concepts
	Basic Concepts
	Basic Concepts
	Basic Concepts
	Assumptions of Trust
	Assumptions of Trust
	Assumptions of Trust
	Restricting Users
	Restricting Users
	Authentication
	Authentication
	Authentication
	Other Security Mechanisms
	Example “Strong” Configuration
	Security Negotiation
	Security Negotiation
	Security Configuration
	Configuration Security
	Configuration Security
	HTCondor Privilege
	HTCondor Privilege
	StartD Configurations
	glexec
	Encrypted File Transfer
	Encrypt Execute Directory
	Vulnerabilities
	Questions?

