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› What are the threats?

› Who do you trust?

› What are the mechanisms?

› Other security concerns?
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Overview



› The purpose of HTCondor is to accept 
arbitrary code from users and run it on a 
large number of machines

Threats
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› The purpose of HTCondor is to accept 
arbitrary code from users and run it on a 
large number of machines

› The purpose of a botnet is to take arbitrary 
code and run it on a large number of 
machines

Threats
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› So what’s the difference?

› You wish to prevent unauthorized access

› Ultimately, it just comes down to who can 
use your pool, and how they can use it.

Threats
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Basic Concepts

› “Who can use your pool” is really two 
concepts:

› The “Who” is authentication

› The “can use” is authorization



Basic Concepts

› Authentication is finding out WHO some 
entity is.

› How is this done?
Common methods:

• Present a secret that only you should know
• Perform some action that only you can do
• Present a credential that only you could have



Basic Concepts

› Authorization is deciding what someone is 
allowed to do.

› You must know who they are before you 
can decide this!



Basic Concepts

› I’m using “they” pretty loosely here. 

› “They” could be:
A user
A machine
An agent/daemon/service



Basic Concepts

› In the context of an HTCondor pool:
You want only machines that you trust to be in 

the pool
You want only people you trust to submit jobs



› HTCondor relies on trusting the “root” user 
of a machine

› If this is compromised, all bets are off

› HTCondor daemons trust each other

› You need to trust your friendly HTCondor
administrator

Assumptions of Trust
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› How about users?

› HTCondor places some restrictions on 
users:
zmiller cannot submit, remove, or manipulate 

jobs belonging to another user
› But ”bad” users can still cause problems
Running fork bomb:  while(1) { fork() }
Intentionally interfering with the system

Assumptions of Trust
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› So, users are trusted to some degree

› Preventing every possible bad behavior 
makes the system too cumbersome for 
good users
Security is always a balancing act with 

usability
› Decide how much you want to prevent 

versus punish

Assumptions of Trust
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› SUBMIT_REQUIREMENT allows the 
administrator to restrict what jobs are able 
to enter the queue

› Can be used to prevent users from lying 
about what groups they belong to:

SUBMIT_REQUIREMENT_NAMES = GROUP1

SUBMIT_REQUIREMENT_GROUP1= (AcctGroup =!= “group1”) ||
(AcctGroup =?= “group1” && (Owner==“zmiller” || Owner==“tannenba”))

SUBMIT_REQUIREMENT_GROUP1_REASON=“User not in group1”

Restricting Users
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› SUBMIT_REQUIREMENT allows the 
administrator to restrict what jobs are able 
to enter the queue

› Can be used to allow only certain 
executable files, number of CPUs 
requested for a job, anything else that is 
part of the Job ClassAd

Restricting Users
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Authentication

› When users submit jobs, HTCondor
authenticates them

› The HTCondor SCHEDD daemon now 
“owns” the jobs, and acts on their behalf.



Authentication

› So how can we trust the SCHEDD?

› Daemon-to-daemon authentication



Authentication

› For a secure pool, both users and 
HTCondor daemons must authenticate 
themselves

› HTCondor supports several mechanisms:
File System
Password
Kerberos
SSL
GSI



› In addition to authenticating network 
connections, you may also wish to use:

› Integrity Checks (MD5)
Allows HTCondor to know if traffic has been 

tampered with
› Encryption (3DES, Blowfish)
Allows HTCondor to transmit encrypted data 

so it cannot be spied on while in transit

Other Security Mechanisms
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SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = Kerberos
SEC_DEFAULT_ENCRYPTION = REQUIRED
SEC_DEFAULT_INTEGRITY = REQUIRED

Example “Strong” Configuration
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› When first contacting each other, 
HTCondor daemons have a short 
negotiation to find out which mechanisms 
are support and what features are required 
for the connection

Security Negotiation
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client
server

I want to submit a job

You must authenticate w/ kerberos

KERBEROS
normal submit protocol



Security Negotiation

› Policy Reconciliation Example:

CLIENT POLICY
SEC_DEFAULT_ENCRYPTION = OPTIONAL 
SEC_DEFAULT_INTEGRITY = OPTIONAL
SEC_DEFAULT_AUTHENTICATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD

SERVER POLICY
SEC_DEFAULT_ENCRYPTION = REQUIRED
SEC_DEFAULT_INTEGRITY = REQUIRED
SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

RECONCILED POLICY
ENCRYPTION = YES
INTEGRITY = YES
AUTHENTICATION = YES
METHODS = SSL



› I’m going to skip the detailed configuration 
of each particular security mechanism.

› Security is not one-size fits all

› If you are interested in details, please 
schedule some “office hours” with me to 
discuss.

Security Configuration
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› Are your condor_config files secured?

› They should be owned and only modifiable 
by root.

› If you use a config directory, make sure 
only root can create files in it

Configuration Security
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› HTCondor can allow configuration changes 
using a command-line tool:
condor_config_val –set Name Value

› However, this behavior is off by default and 
needs to be enabled on a case-by-case 
basis for each config parameter… use 
carefully only if you really need it

Configuration Security
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› HTCondor typically runs “as root”

› Why?
Impersonating users
Process isolation
Reading secure credentials

› When it isn’t actively using root, it switches 
effective UID to another user (“condor”)

HTCondor Privilege
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› HTCondor will never launch a user job as 
root.  There is a “circuit breaker” at the 
lowest level to prevent it.

› If not using system credentials, the Central 
Manager can run without root priv

› Let’s examine some different Startd
configurations

HTCondor Privilege
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› Startds have a few different options for 
running jobs:

› Run jobs as the submitting user
› Run jobs as the user “nobody”
Allows jobs to interfere with one another

› Run jobs as a dedicated user per slot
Keeps jobs running as a low-privilege user
Isolates jobs from one another
Makes it easy to clean up after a job

StartD Configurations
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› Allows HTCondor daemons to be run 
without root privilege, yet running jobs can 
still assume the UID of the submitting user

› Uses GSI credentials to authenticate

› Very useful for glidein jobs

glexec
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› Even if that admin has not required 
encryption for all network connections, user 
jobs can specify per-file for both input and 
output if the files should be encrypted:
Encrypt_Input_Files = file1, *.dat
Encrypt_Output_Files = data.private

Encrypted File Transfer
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› If you are using Linux with ecryptfs
installed, you can have HTCondor encrypt 
the execute directory on disk, offering extra 
protection of sensitive data.

› Can be enabled pool-wide by the admin:
ENCRYPT_EXECUTE_DIRECTORY = True

› Per-job in the submit file:
Encrypt_Execute_Directory = True

Encrypt Execute Directory
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› HTCondor has been assessed by an 
independent research group.

› That was many years ago.  Another audit 
will be coming “soon”

› Our vulnerability reporting process is 
documented and vulnerability reports 
publicly available:

› http://research.cs.wisc.edu/htcondor/security/

Vulnerabilities
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http://research.cs.wisc.edu/htcondor/security/


› Schedule “office hours” this week

› Email the htcondor-users mailing list and if 
your question is security related I will 
(likely) respond

› Email me directly

Questions?
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