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› So you have some resources…
… how does HTCondor decide which job to run?

› The admin needs to define a policy that 
controls the relative priorities

› What defines a “good” or “fair” policy?

HTCondor scheduling policy
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› HTCondor does not share the same model 
of, for example, PBS, where jobs are 
placed into a first-in-first-out queue

› It instead is based around a concept called 
“Fair Share”
hAssumes users are competing for resources

hAims for long-term fairness

First Things First

3



› Available compute resources are “The Pie”
› Users, with their relative priorities, are each 

trying to get their “Pie Slice”
› But it’s more complicated: Both users and 

machines can specify preferences.
› Basic questions need to be answered, such 

as “do you ever want to preempt a running 
job for a new job if it’s a better match”? (For 
some definition of “better”)

Spinning Pie
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› First, the Matchmaker takes some jobs 
from each user and finds resources for 
them.

› After all users have got their initial “Pie 
Slice”, if there are still more jobs and 
resources, we continue “spinning the pie” 
and handing out resources until everything 
is matched.

Spinning Pie
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› If two users have the same relative priority, 
then over time the pool will be divided 
equally among them.

› Over time?
› Yes!  By default, HTCondor tracks usage 

and has a formula for determining priority 
based on both current demand and prior 
usage

› However, prior usage “decays” over time

Relative Priorities
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› Example: (A pool of 100 cores)
› User ‘A’ submits 100,000 jobs and 100 of 

them begin running, using the entire pool.
› After 8 hours, user ‘B’ submits 100,000 jobs

› What happens?

Pseudo-Example
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› Example: (A pool of 100 cores)
› User ‘A’ submits 100,000 jobs and 100 of 

them begin running, using the entire pool.
› After 8 hours, user ‘B’ submits 100,000 jobs
› The scheduler will now allocate MORE than 

50 cores to user ‘B’ because user ‘A’ has 
accumulated a lot of recent usage

› Over time, each will end up with 50 cores.

Pseudo-Example
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Overview of Condor Architecture
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› Negotiator computes, stores the user prio

› View with condor_userprio tool
› Inversely related to machines allocated 

(lower number is better priority)
hA user with priority of 10 will be able to claim 

twice as many machines as a user with priority 
20

Negotiator metric: User Priority
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› Bob in schedd1 same as Bob in schedd2?
› If have same UID_DOMAIN, they are.

› We’ll talk later about other user definitions.

› Map files can define the local user name

What’s a user?
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› (Effective) User Priority is determined by 
multiplying two components

› Real Priority * Priority Factor

User Priority
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› Based on actual usage
› Starts at 0.5
› Approaches actual number of machines used 

over time
hConfiguration setting PRIORITY_HALFLIFE

hIf PRIORITY_HALFLIFE = +Inf, no history

hDefault one day (in seconds)

› Asymptotically grows/shrinks to current usage

Real Priority
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› Assigned by administrator
hSet/viewed with condor_userprio

hPersistently stored in CM

› Defaults to 100 (DEFAULT_PRIO_FACTOR)

› Allows admins to give prio to sets of users, 
while still having fair share within a group

› “Nice user”s have Prio Factors of 1,000,000

Priority Factor
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› Command usage:

condor_userprio
                                      Effective  Priority
User Name                             Priority    Factor   In Use (wghted-hrs) Last Usage
---------------------------------------------- --------- ------ ----------- ----------
lmichael@submit-3.chtc.wisc.edu            5.00     10.00      0        16.37    0+23:46
blin@osghost.chtc.wisc.edu                 7.71     10.00      0      5412.38    0+01:05
osgtest@osghost.chtc.wisc.edu             90.57     10.00     47     45505.99      <now>
cxiong36@submit-3.chtc.wisc.edu          500.00   1000.00      0         0.29    0+00:09
ojalvo@hep.wisc.edu                      500.00   1000.00      0    398148.56    0+05:37
wjiang4@submit-3.chtc.wisc.edu           500.00   1000.00      0         0.22    0+21:25
cxiong36@submit.chtc.wisc.edu            500.00   1000.00      0        63.38    0+21:42

condor_userprio
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› So far everything we saw was BETWEEN 
different users

› Individual users can also control the 
priorities and preferences WITHIN their 
own jobs

Different Type of Priority
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› Set in submit file with 

JobPriority = 7
› … or dynamically with condor_prio cmd
› Users can set priority of their own jobs
› Integers, larger numbers are better priority
› Only impacts order between jobs for a 

single user on a single schedd
› A tool for users to sort their own jobs

Schedd Policy: Job Priority
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› Set in submit file with

RANK = Memory

› Not as powerful as you may think:
hRemember steady state condition – there may 

not be that many resources to sort at any given 
time when pool is fully utilized.

Schedd Policy:  Job Rank
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› Manage priorities across groups of users 
and jobs

› Can guarantee maximum numbers of 
computers for groups (quotas)

› Supports hierarchies
› Anyone can join any group (well…)

Accounting Groups (2 kinds)
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› In submit file
hAccounting_Group = “group1”

› Treats all users as the same for priority
› Accounting groups not pre-defined
› No verification – HTCondor trusts the job
› condor_userprio replaces user with group

Accounting Groups as Alias
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condor_userprio –setfactor 10 
group1@wisc.edu
condor_userprio –setfactor 20 
group2@wisc.edu

Note that you must get UID_DOMAIN correct

Gives group1 members twice as many 
resources as group2

Prio factors with groups
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› Must be predefined in cm’s config file:

GROUP_NAMES = a, b, c
GROUP_QUOTA_a = 10
GROUP_QUOTA_b = 20
› And in submit file:

Accounting_Group = a
Accounting_User = gthain

Accounting Groups w/ Quota
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› “a” limited to 10
› “b” to 20

› Even if idle machines
› What is the unit?

hSlot weight.

› With fair share for users within group

Group Quotas
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› Static versus Dynamic: Number of nodes 
versus proportion of the nodes

› Dynamic scales to size of pool.
› Static only “scales” if you oversubscribe 

your pool – HTCondor shrinks the 
allocations proportionally so they fit
hThis can be disabled in the configuration

Hierarchical Group Quotas
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Hierarchical Group Quotas

physicsphysics CompSciCompSci

string 
theory
string 

theory
particle 
physics
particle 
physics

architectur
e

architectur
e     DB    DB

CMSCMS CDFCDF

700 200

100 600

200 100

100 100

ATLASATLAS

200



26

Hierarchical Group Quotas

physicsphysics CompSciCompSci

string 
theory
string 

theory
particle 
physics
particle 
physics

architectur
e

architectur
e     DB    DB

CMSCMS CDFCDF

0.66 0.33

0.2 0.6

0.4 0.2

0.5 0.5

ATLASATLAS

0.4



27

Hierarchical Group Quotas
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Hierarchical Group Quotas
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Hierarchical Group Quotas
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Who gets to use them?

In this case, only “particle physics”
(not the children… quotas are
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› Determines who can share extra resources

› Allows groups to go over quota if there are 
idle machines

› Creates the true hierarchy

› Defined per group, or subgroup, or sub-sub…

GROUP_ACCEPT_SURPLUS
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Hierarchical Group Quotas
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Hierarchical Group Quotas
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› Also allows groups to go over quota if idle 
machines.

› “Last chance” round, with every submitter 
for themselves.

GROUP_AUTOREGROUP
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› We’ll switch gears a little bit to talk about 
other pool-wide mechanisms that affect 
matchmaking…

› Welcome Jaime!

Enough with groups…
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› Match between schedd and startd can be 
reused to run many jobs

› May need to create opportunities to 
rebalance how machines are allocated
hNew user

hJobs with special requirements (GPUs, high 
memory)

Rebalancing the Pool
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› Have startds return frequently to negotiator 
for rematching
hCLAIM_WORKLIFE

hDraining

hMore load on system, may not be necessary

› Have negotiator proactively rematch a 
machine
hPreempt running job to replace with better job

hMaxJobRetirementTime can minimize 
killing of jobs

How to Rematch
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› Fundamental tension between
hThroughput vs. Fairness

› Preemption is required to have fairness

› Need to think hard about runtimes, fairness 
and preemption

› Negotiator implements preemption
› (Workers implement eviction: different)

A note about Preemption
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› Startd Rank
hStartd prefers new job

• New job has larger startd Rank value

› User Priority
hNew job’s user has higher priority (deserves 

increased share of the pool)
• New job has lower user prio value

› No preemption by default
hMust opt-in

Two Types of Preemption
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› Gets all the slot ads
› Updates user prio info for all users
› Based on user prio, computes submitter 

limit for each user 
› For each user, finds the schedd

hFor each job (up to submitter limit)
• Finds all matching machines for job
• Sorts the machines
• Gives the job the best sorted machine

Negotiation Cycle
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› Single sort on a five-value key
h NEGOTIATOR_PRE_JOB_RANK

hJob Rank

h NEGOTIATOR_POST_JOB_RANK

hNo preemption > Startd Rank preemption > 
User priority preemption

h PREEMPTION_RANK

Sorting Slots: Sort Levels
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› Evaluated as if in the machine ad
› MY.Foo :  Foo in machine ad
› TARGET.Foo :  Foo in job ad
› Foo :  check machine ad, then job ad for 

Foo
› Use MY or TARGET if attribute could 

appear in either ad

Negotiator Expression 
Conventions

41



› Negotiator adds attributes about pool 
usage of job owners

› Info about job being matched
hSubmitterUserPrio

hSubmitterUserResourcesInUse

› Info about running job that would be 
preempted
hRemoteUserPrio

hRemoteUserResourcesInUse

Accounting Attributes
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› More attributes when using groups
hSubmitterNegotiatingGroup

hSubmitterAutoregroup

hSubmitterGroup

hSubmitterGroupResourcesInUse

hSubmitterGroupQuota

hRemoteGroup

hRemoteGroupResourcesInUse

hRemoteGroupQuota

Group Accounting Attributes
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› (10000000 * My.Rank) + 
(1000000 * (RemoteOwner=?=UNDEFINED)) - 
(100000 * Cpus) - Memory

› Default
› Prefer machines that like this job more
› Prefer idle machines
› Prefer machines with fewer CPUs, less 

memory

NEGOTIATOR_PRE_JOB_RANK
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› KFlops – SlotID
› Prefer faster machines
› Breadth-first filling of statically-partitioned 

machines

NEGOTIATOR_POST_JOB_RANK
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If Matched machine claimed,
extra checks required

› PREEMPTION_REQUIREMENTS and 
PREEMPTION_RANK

› Evaluated when condor_negotiator 
considers replacing a lower priority job 
with a higher priority job

› Completely unrelated to the PREEMPT 
expression (which should be called evict)
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› If False, will not preempt for user priority
› Only replace jobs running for at least one 

hour and 20% lower priority
StateTimer = \
 (CurrentTime – EnteredCurrentState)
HOUR = (60*60)
PREEMPTION_REQUIREMENTS = \
 $(StateTimer) > (1 * $(HOUR)) \
 && RemoteUserPrio > SubmitterUserPrio * 1.2

NOTE: classad debug() function v. handy

PREEMPTION_REQUIREMENTS
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› Can restrict preemption to restoring quotas

PREEMPTION_REQUIREMENTS = 
( SubmitterGroupResourcesInUse <
  SubmitterGroupQuota ) &&
( RemoteGroupResourcesInUse >
  RemoteGroupQuota )

Preemption with HQG
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› Of all claimed machines where 
PREEMPTION_REQUIREMENTS is true, 
picks which one machine to reclaim

› Strongly prefer preempting jobs with a large 
(bad) priority and less runtime

PREEMPTION_RANK = \
 (RemoteUserPrio * 1000000) \
 – TotalJobRuntime

PREEMPTION_RANK
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› NEGOTIATOR_CONSIDER_PREEMPTION = 
False

› Negotiator completely ignores claimed 
startds when matching

› Makes matching faster
› Startds can still evict jobs, then be 

rematched

No-Preemption Optimization
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› Manage pool-wide resources
hE.g. software licenses, DB connections

› In central manager config
› FOO_LIMIT = 10
› BAR_LIMIT = 15

› In submit file
› concurrency_limits = foo,bar:2

Concurrency Limits
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› Many ways to schedule

Summary
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