
Matchmaker Policies:
Users and Groups
HTCondor Week, Madison 2016

Zach Miller (zmiller@cs.wisc.edu)
Jaime Frey (jfrey@cs.wisc.edu)

Center for High Throughput Computing
Department of Computer Sciences
University of Wisconsin-Madison

› So you have some resources…
… how does HTCondor decide which job to run?

› The admin needs to define a policy that
controls the relative priorities

› What defines a “good” or “fair” policy?

HTCondor scheduling policy

2

› HTCondor does not share the same model
of, for example, PBS, where jobs are
placed into a first-in-first-out queue

› It instead is based around a concept called
“Fair Share”
hAssumes users are competing for resources

hAims for long-term fairness

First Things First

3

› Available compute resources are “The Pie”
› Users, with their relative priorities, are each

trying to get their “Pie Slice”
› But it’s more complicated: Both users and

machines can specify preferences.
› Basic questions need to be answered, such

as “do you ever want to preempt a running
job for a new job if it’s a better match”? (For
some definition of “better”)

Spinning Pie

4

› First, the Matchmaker takes some jobs
from each user and finds resources for
them.

› After all users have got their initial “Pie
Slice”, if there are still more jobs and
resources, we continue “spinning the pie”
and handing out resources until everything
is matched.

Spinning Pie

5

› If two users have the same relative priority,
then over time the pool will be divided
equally among them.

› Over time?
› Yes! By default, HTCondor tracks usage

and has a formula for determining priority
based on both current demand and prior
usage

› However, prior usage “decays” over time

Relative Priorities

6

› Example: (A pool of 100 cores)
› User ‘A’ submits 100,000 jobs and 100 of

them begin running, using the entire pool.
› After 8 hours, user ‘B’ submits 100,000 jobs

› What happens?

Pseudo-Example

7

› Example: (A pool of 100 cores)
› User ‘A’ submits 100,000 jobs and 100 of

them begin running, using the entire pool.
› After 8 hours, user ‘B’ submits 100,000 jobs
› The scheduler will now allocate MORE than

50 cores to user ‘B’ because user ‘A’ has
accumulated a lot of recent usage

› Over time, each will end up with 50 cores.

Pseudo-Example

8

Overview of Condor Architecture

9

Central
Manager

Greg Job1
Greg Job2
Greg Job3
Ann Job1
Ann Job2
Ann Job3

Greg Job4
Greg Job5
Greg Job6
Ann Job7
Ann Job8
Joe Job1
Joe Job2
Joe Job3

Schedd A Schedd B

worker worker worker worker worker worker

Usage
History

› Negotiator computes, stores the user prio

› View with condor_userprio tool
› Inversely related to machines allocated

(lower number is better priority)
hA user with priority of 10 will be able to claim

twice as many machines as a user with priority
20

Negotiator metric: User Priority

10

› Bob in schedd1 same as Bob in schedd2?
› If have same UID_DOMAIN, they are.

› We’ll talk later about other user definitions.

› Map files can define the local user name

What’s a user?

11

› (Effective) User Priority is determined by
multiplying two components

› Real Priority * Priority Factor

User Priority

12

› Based on actual usage
› Starts at 0.5
› Approaches actual number of machines used

over time
hConfiguration setting PRIORITY_HALFLIFE

hIf PRIORITY_HALFLIFE = +Inf, no history

hDefault one day (in seconds)

› Asymptotically grows/shrinks to current usage

Real Priority

13

› Assigned by administrator
hSet/viewed with condor_userprio

hPersistently stored in CM

› Defaults to 100 (DEFAULT_PRIO_FACTOR)

› Allows admins to give prio to sets of users,
while still having fair share within a group

› “Nice user”s have Prio Factors of 1,000,000

Priority Factor

14

› Command usage:

condor_userprio
 Effective Priority
User Name Priority Factor In Use (wghted-hrs) Last Usage
-- --------- ------ ----------- ----------
lmichael@submit-3.chtc.wisc.edu 5.00 10.00 0 16.37 0+23:46
blin@osghost.chtc.wisc.edu 7.71 10.00 0 5412.38 0+01:05
osgtest@osghost.chtc.wisc.edu 90.57 10.00 47 45505.99 <now>
cxiong36@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.29 0+00:09
ojalvo@hep.wisc.edu 500.00 1000.00 0 398148.56 0+05:37
wjiang4@submit-3.chtc.wisc.edu 500.00 1000.00 0 0.22 0+21:25
cxiong36@submit.chtc.wisc.edu 500.00 1000.00 0 63.38 0+21:42

condor_userprio

15

› So far everything we saw was BETWEEN
different users

› Individual users can also control the
priorities and preferences WITHIN their
own jobs

Different Type of Priority

16

› Set in submit file with

JobPriority = 7
› … or dynamically with condor_prio cmd
› Users can set priority of their own jobs
› Integers, larger numbers are better priority
› Only impacts order between jobs for a

single user on a single schedd
› A tool for users to sort their own jobs

Schedd Policy: Job Priority

17

› Set in submit file with

RANK = Memory

› Not as powerful as you may think:
hRemember steady state condition – there may

not be that many resources to sort at any given
time when pool is fully utilized.

Schedd Policy: Job Rank

18

› Manage priorities across groups of users
and jobs

› Can guarantee maximum numbers of
computers for groups (quotas)

› Supports hierarchies
› Anyone can join any group (well…)

Accounting Groups (2 kinds)

19

› In submit file
hAccounting_Group = “group1”

› Treats all users as the same for priority
› Accounting groups not pre-defined
› No verification – HTCondor trusts the job
› condor_userprio replaces user with group

Accounting Groups as Alias

20

condor_userprio –setfactor 10
group1@wisc.edu
condor_userprio –setfactor 20
group2@wisc.edu

Note that you must get UID_DOMAIN correct

Gives group1 members twice as many
resources as group2

Prio factors with groups

21

› Must be predefined in cm’s config file:

GROUP_NAMES = a, b, c
GROUP_QUOTA_a = 10
GROUP_QUOTA_b = 20
› And in submit file:

Accounting_Group = a
Accounting_User = gthain

Accounting Groups w/ Quota

22

› “a” limited to 10
› “b” to 20

› Even if idle machines
› What is the unit?

hSlot weight.

› With fair share for users within group

Group Quotas

23

› Static versus Dynamic: Number of nodes
versus proportion of the nodes

› Dynamic scales to size of pool.
› Static only “scales” if you oversubscribe

your pool – HTCondor shrinks the
allocations proportionally so they fit
hThis can be disabled in the configuration

Hierarchical Group Quotas

24

25

Hierarchical Group Quotas

physicsphysics CompSciCompSci

string
theory
string

theory
particle
physics
particle
physics

architectur
e

architectur
e DB DB

CMSCMS CDFCDF

700 200

100 600

200 100

100 100

ATLASATLAS

200

26

Hierarchical Group Quotas

physicsphysics CompSciCompSci

string
theory
string

theory
particle
physics
particle
physics

architectur
e

architectur
e DB DB

CMSCMS CDFCDF

0.66 0.33

0.2 0.6

0.4 0.2

0.5 0.5

ATLASATLAS

0.4

27

Hierarchical Group Quotas

physicsphysics

string
theory
string

theory
particle
physics
particle
physics

CMSCMS CDFCDF

700

100 600

200 100

ATLASATLAS

200

GROUP_QUOTA_physics = 700
GROUP_QUOTA_physics.string_theory = 100

GROUP_QUOTA_physics.particle_physics = 600
GROUP_QUOTA_physics.particle_physics.CMS = 200

GROUP_QUOTA_physics.particle_physics.ATLAS = 200
GROUP_QUOTA_physics.particle_physics.CDF = 100

group.sub-
group.sub-sub-

group…

28

Hierarchical Group Quotas

physicsphysics

string
theory
string

theory
particle
physics
particle
physics

CMSCMS CDFCDF

700

100 600

200 100

ATLASATLAS

200

Look closely at the numbers in red

600 – (200 + 200 + 100) = 100

There are extra resources there…
now what?

29

Hierarchical Group Quotas

physicsphysics

string
theory
string

theory
particle
physics
particle
physics

CMSCMS CDFCDF

700

100 500+100

200 100

ATLASATLAS

200

There are 100 extra resources there

Who gets to use them?

In this case, only “particle physics”
(not the children… quotas are

still strictly enforced there)

› Determines who can share extra resources

› Allows groups to go over quota if there are
idle machines

› Creates the true hierarchy

› Defined per group, or subgroup, or sub-sub…

GROUP_ACCEPT_SURPLUS

30

31

Hierarchical Group Quotas

physicsphysics

string
theory
string

theory
particle
physics
particle
physics

CMSCMS CDFCDF

700

100 500+100

200+400 100+500

ATLASATLAS

200+400

Numbers in RED are shared across
the three children

“Particle physics” is still capped at
600 even if “string theory” is

completely idle

CMS/ATLAS/CDF can now
go over their quotas if the
other groups have no jobs

32

Hierarchical Group Quotas

physicsphysics

string
theory
string

theory
particle
physics
particle
physics

CMSCMS CDFCDF

700

100 500+100

200+400 100+500

ATLASATLAS

200+400

GROUP_ACCEPT_SURPLUS_
physics.particle_physics.CMS = TRUE

GROUP_ACCEPT_SURPLUS_
physics.particle_physics.ATLAS = TRUE

GROUP_ACCEPT_SURPLUS_
physics.particle_physics.CDF = TRUE

GROUP_ACCEPT_SURPLUS_
physics.particle_physics = TRUE

› Also allows groups to go over quota if idle
machines.

› “Last chance” round, with every submitter
for themselves.

GROUP_AUTOREGROUP

33

› We’ll switch gears a little bit to talk about
other pool-wide mechanisms that affect
matchmaking…

› Welcome Jaime!

Enough with groups…

34

› Match between schedd and startd can be
reused to run many jobs

› May need to create opportunities to
rebalance how machines are allocated
hNew user

hJobs with special requirements (GPUs, high
memory)

Rebalancing the Pool

35

› Have startds return frequently to negotiator
for rematching
hCLAIM_WORKLIFE

hDraining

hMore load on system, may not be necessary

› Have negotiator proactively rematch a
machine
hPreempt running job to replace with better job

hMaxJobRetirementTime can minimize
killing of jobs

How to Rematch

36

› Fundamental tension between
hThroughput vs. Fairness

› Preemption is required to have fairness

› Need to think hard about runtimes, fairness
and preemption

› Negotiator implements preemption
› (Workers implement eviction: different)

A note about Preemption

37

› Startd Rank
hStartd prefers new job

• New job has larger startd Rank value

› User Priority
hNew job’s user has higher priority (deserves

increased share of the pool)
• New job has lower user prio value

› No preemption by default
hMust opt-in

Two Types of Preemption

38

› Gets all the slot ads
› Updates user prio info for all users
› Based on user prio, computes submitter

limit for each user
› For each user, finds the schedd

hFor each job (up to submitter limit)
• Finds all matching machines for job
• Sorts the machines
• Gives the job the best sorted machine

Negotiation Cycle

39

› Single sort on a five-value key
h NEGOTIATOR_PRE_JOB_RANK

hJob Rank

h NEGOTIATOR_POST_JOB_RANK

hNo preemption > Startd Rank preemption >
User priority preemption

h PREEMPTION_RANK

Sorting Slots: Sort Levels

40

› Evaluated as if in the machine ad
› MY.Foo : Foo in machine ad
› TARGET.Foo : Foo in job ad
› Foo : check machine ad, then job ad for

Foo
› Use MY or TARGET if attribute could

appear in either ad

Negotiator Expression
Conventions

41

› Negotiator adds attributes about pool
usage of job owners

› Info about job being matched
hSubmitterUserPrio

hSubmitterUserResourcesInUse

› Info about running job that would be
preempted
hRemoteUserPrio

hRemoteUserResourcesInUse

Accounting Attributes

42

› More attributes when using groups
hSubmitterNegotiatingGroup

hSubmitterAutoregroup

hSubmitterGroup

hSubmitterGroupResourcesInUse

hSubmitterGroupQuota

hRemoteGroup

hRemoteGroupResourcesInUse

hRemoteGroupQuota

Group Accounting Attributes

43

› (10000000 * My.Rank) +
(1000000 * (RemoteOwner=?=UNDEFINED)) -
(100000 * Cpus) - Memory

› Default
› Prefer machines that like this job more
› Prefer idle machines
› Prefer machines with fewer CPUs, less

memory

NEGOTIATOR_PRE_JOB_RANK

44

› KFlops – SlotID
› Prefer faster machines
› Breadth-first filling of statically-partitioned

machines

NEGOTIATOR_POST_JOB_RANK

45

If Matched machine claimed,
extra checks required

› PREEMPTION_REQUIREMENTS and
PREEMPTION_RANK

› Evaluated when condor_negotiator
considers replacing a lower priority job
with a higher priority job

› Completely unrelated to the PREEMPT
expression (which should be called evict)

46

› If False, will not preempt for user priority
› Only replace jobs running for at least one

hour and 20% lower priority
StateTimer = \
 (CurrentTime – EnteredCurrentState)
HOUR = (60*60)
PREEMPTION_REQUIREMENTS = \
 $(StateTimer) > (1 * $(HOUR)) \
 && RemoteUserPrio > SubmitterUserPrio * 1.2

NOTE: classad debug() function v. handy

PREEMPTION_REQUIREMENTS

47

› Can restrict preemption to restoring quotas

PREEMPTION_REQUIREMENTS =
(SubmitterGroupResourcesInUse <
 SubmitterGroupQuota) &&
(RemoteGroupResourcesInUse >
 RemoteGroupQuota)

Preemption with HQG

48

› Of all claimed machines where
PREEMPTION_REQUIREMENTS is true,
picks which one machine to reclaim

› Strongly prefer preempting jobs with a large
(bad) priority and less runtime

PREEMPTION_RANK = \
 (RemoteUserPrio * 1000000) \
 – TotalJobRuntime

PREEMPTION_RANK

49

› NEGOTIATOR_CONSIDER_PREEMPTION =
False

› Negotiator completely ignores claimed
startds when matching

› Makes matching faster
› Startds can still evict jobs, then be

rematched

No-Preemption Optimization

50

› Manage pool-wide resources
hE.g. software licenses, DB connections

› In central manager config
› FOO_LIMIT = 10
› BAR_LIMIT = 15

› In submit file
› concurrency_limits = foo,bar:2

Concurrency Limits

51

› Many ways to schedule

Summary

52

	Slide 1
	HTCondor scheduling policy
	First Things First
	Spinning Pie
	Spinning Pie
	Relative Priorities
	Pseudo-Example
	Pseudo-Example
	Overview of Condor Architecture
	Negotiator metric: User Priority
	What’s a user?
	User Priority
	Real Priority
	Priority Factor
	condor_userprio
	Different Type of Priority
	Schedd Policy: Job Priority
	Schedd Policy: Job Rank
	Accounting Groups (2 kinds)
	Accounting Groups as Alias
	Prio factors with groups
	Accounting Groups w/ Quota
	Group Quotas
	Hierarchical Group Quotas
	Hierarchical Group Quotas
	Hierarchical Group Quotas
	Hierarchical Group Quotas
	Hierarchical Group Quotas
	Hierarchical Group Quotas
	GROUP_ACCEPT_SURPLUS
	Hierarchical Group Quotas
	Hierarchical Group Quotas
	GROUP_AUTOREGROUP
	Enough with groups…
	Rebalancing the Pool
	How to Rematch
	A note about Preemption
	Two Types of Preemption
	Negotiation Cycle
	Sorting Slots: Sort Levels
	Negotiator Expression Conventions
	Accounting Attributes
	Group Accounting Attributes
	NEGOTIATOR_PRE_JOB_RANK
	NEGOTIATOR_POST_JOB_RANK
	If Matched machine claimed, extra checks required
	PREEMPTION_REQUIREMENTS
	Preemption with HQG
	PREEMPTION_RANK
	No-Preemption Optimization
	Concurrency Limits
	Summary

