
Getting To Multicore:
Resizing jobs in CMS

Brian Bockelman
HTCondor Week 2016

1

WARNING: 
Abundant ClassAd
Expressions Ahead

2

A problem of partitioning…
• Within CMS, we’ve been busily working to enable multithreading in our

physics application, CMSSW.

• We can now run about half of our applications

• Application in hand, we must ask ourselves how we roll it out in our
historically-single core pool.

• Some workflows are multicore, some are singlecore-only.

• The multicore workflows can be submitted as single-core or
multicore.

• Some sites are multicore, some sites are multicore.

• How do we partition our workflow such that we fully utilize all our cores?

3

The Global Pool and
Multicore

• The CMS HTCondor pool - the “global pool” consists of HTCondor startds allocated from
about 50 CMS sites around the planet. Everything goes into a single condor_collector.

• About 70%* of the startds are 8-core partitionable slots; the rest are single-core
startds.

• The single-core startds are due to sites that have not yet reconfigured their batch
system. Some are opportunistic and will never be converted to multicore.

• Multicore allows us:

• Reduce per-core memory requirements.

• Reduce the number of jobs (both in the schedd and in the upstream CMS
infrastructure).

• Decrease total runtime of jobs (48 hour single-core jobs may only take 16 hours on 4-
core slots).

* number increases almost daily
4

What to do?

Inject all our multicore workflows as multicore, make the most
of our multicore advantages?

Submit all our multicore jobs as single core to maximize site
utilization?

Split the workflows 50/50 and hope we don’t idle some of the
cores?

Flip a coin?
5

The Resizable Job
• Fundamentally, partitioning our workflows leads to inefficiency

as we will inevitably do it wrong.

• Even if CPUs don’t idle, we’re almost guarantee to have
priority inversion: we’ll run low-priority singlecore jobs while
high-priority workflow waits because it was injected as
multicore.

• New idea: the resizable job.

• A job that will match a range of resources, and reconfigure
itself at runtime based on the resources allocated.

• Examples to follow

6

That’s not an integer,
it’s an expression!

• The key insight here is the RequestedCpus
attribute can be an expression. Hence, both of
these are valid inputs:

• We can do something even more interesting:

RequestedCpus = 1
RequestedCpus = 1 + 1

RequestedCpus = Cpus

Goes into job ad Refers to Cpus attribute 
from machine ad7

What does it mean?
• What does this expression mean?

• When the matchmaker considers a machine for a certain
job, RequestCpus evaluates to be the same as the number
of available cores.

• Hence, we will match against any number of cores, 1 to 100.

• What happens when RequestCpus is evaluated outside the
negotiator?

• Whoops…

RequestCpus = Cpus

RequestCpus = isUndefined(Cpus) ? 1 : Cpus
8

Example
ClusterId = 1
ProcId = 0
Cmd = “…”
RequestMemory = 1000
Requirements = true
RequestCpus =
 isUndefined(Cpus)?
 1 : Cpus

Job

Name = “slot1@ex.com”
State = “Unclaimed”
PartitionableSlot = true
Activity = “Idle”
Cpus = 3
Memory = 2000

Machine

Result

Cpus = 3
Memory = 2000

9

Consider the Context
• There’s a few rules we’d like these jobs to obey:

• Make sure jobs stay within a certain range.

• When idle, report RequestCpus as the value
originally requested by the user.  
 

MinCores = 1
MaxCores = 4
RequestResizedCpus = (Cpus > MaxCores) ?  
 MaxCores :
 ((Cpus < MinCores) ? MinCores : Cpus)

RequestCpus = !isUndefined(Cpus) ?
 RequestResizedCpus :  
 JobCpus)

10

Consider the Context
• When running, report RequestCpus as the value

allocated on the worker node.  
 
 
 
 
 
 
 

OriginalCpus = 4  
GlideinCpusIsGood = !isUndefined(MATCH_EXP_JOB_GLIDEIN_Cpus) &&
 (int(MATCH_EXP_JOB_GLIDEIN_Cpus) isnt error)
JOB_GLIDEIN_Cpus = "$$(Cpus:0)"
JobIsRunning = (JobStatus =!= 1) &&  
 (JobStatus =!= 5) &&  
 GlideinCpusIsGood
JobCpus = JobIsRunning ?  
 int(MATCH_EXP_JOB_GLIDEIN_Cpus) : 
 OriginalCpus

11

In technicolor
MinCores = 1
MaxCores = 4
RequestResizedCpus = (Cpus > MaxCores) ?  
 MaxCores :
 ((Cpus < MinCores) ? MinCores : Cpus)
OriginalCpus = 4  
GlideinCpusIsGood = !isUndefined(MATCH_EXP_JOB_GLIDEIN_Cpus) &&
 (int(MATCH_EXP_JOB_GLIDEIN_Cpus) isnt error)
JOB_GLIDEIN_Cpus = "$$(Cpus:0)"
JobIsRunning = (JobStatus =!= 1) &&  
 (JobStatus =!= 5) &&  
 GlideinCpusIsGood
JobCpus = JobIsRunning ?  
 int(MATCH_EXP_JOB_GLIDEIN_Cpus) : 
 OriginalCpus
RequestCpus = !isUndefined(Cpus) ?
 RequestResizedCpus :  
 JobCpus)

12

Other Attributes
• Some aspects of the job request are independent of the number

of cores, such as the gigabytes of output.

• Others will vary with the number of CPUs allocated:

• RequestMemory: Each additional core used adds ~500MB of
RAM to the application.

• Estimated wall time: The estimated wall time should scale with
the inverse of number of cores.

• We want to Rank potential matches by preferring as many
cores as possible and minimizing fragmenting very large slots.

13

Other Attributes

EstimatedSingleCoreMins = 120
MaxWallTimeMins =
 (EstimatedSingleCoreMins/RequestCpus + 15)
OriginalMemory = 4000
RequestMemory =
 OriginalMemory +
 500 * (RequestCpus-OriginalCpus)
Rank = isUndefined(Cpus) ?
 0 :
 ifThenElse(Cpus > MaxCores, -Cpus, Cpus)

14

Runtime
• The condor_starter creates a copy of the

machine ClassAd in the file referenced by
$_CONDOR_MACHINE_AD.

• The CMS job wrapper parses this file and
adjust’s CMSSW’s configuration appropriately.

• This way, at startup, CMSSW knows the number
of cores to utilize.

15

Why give this talk?
• Please don’t copy/paste from the slides!

• I want to provide two take-aways:

• The RequestCpus attribute - normally an integer
- can actually express a policy.

• A few highly-nontrivial examples of ClassAds in
action

16

Where Next?
• Resizable jobs allow us to pack jobs more efficiently into a

startd with “irregularly-sized” idle resources.

• Let’s say we are trying to drain a startd. Can we make
remaining jobs run faster?

• As jobs finish up, can we add CPUs to those still running?

• CMSSW’s threading framework could be modified to
dynamically change the number of active processing
threads.

• Dynamic resizable jobs: the next frontier?

17

Questions?

18

