
Docker and HTCondor

Greg Thain

HTCondor Week 2016

Start with the Basics…
HTCondor is designed to:

Allow a machine “owner” to loan it out

The machine must be protected from job

Ancient History:
Chroot

HTCondor used to chroot every job:

1. No job could touch the file system

2. Private files in host machine stayed private

Chroot: more trouble
than value

Increasingly difficult to work:

Shared libraries

/dev

/sys

/etc

/var/run pipes for syslog, etc.

How to create root filesystem?
Easier now with yum, apt get, etc., but still hard:

We gave up!
HTCondor no longer chroots all jobs

But you can optionally do so.

Very few site sites do…

NAMED_CHROOT = /foo

Enter Docker!

This is Docker
Docker manages Linux containers.
Containers give Linux processes a private:

• Root file
system

• Process space
• NATed network
• UID space

Examples
This is an “ubuntu” container

This is my host OS, running
Fedora

Processes in other
containers on this
machine can NOT see
what’s going on in this
“ubuntu” container

At the Command Line
$ hostname
whale
$ cat /etc/redhat-release
Fedora release 20 (Heisenbug)
$ docker run ubuntu cat /etc/debian_version
jessie/sid
$ time docker run ubuntu sleep 0

real 0m1.825s
user 0m0.017s
sys 0m0.024s

More CLI detail

$ docker run ubuntu cat /etc/debian_version

All docker commands are bound into the “docker” executable

“run” command runs a process in a container

“ubuntu” is the base filesystem for the container
 an “image”

“cat” is the Unix process, from the image
 we will run (followed by the arguments)

Images
Images provide the user level filesystem

Doesn’t contain the linux kernel

Or device drivers

Or swap space

Very small: ubuntu: 200Mb.

Images are READ ONLY

Where images come from
Docker, inc provides a public-access hub

Contains 10,000+ publically usable images behind a CDN

What’s local?

$ docker images
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
new_ubu latest b67902967df7 8 weeks ago 192.7 MB
<none> <none> dd58b0ec6b9a 8 weeks ago 192.7 MB
<none> <none> 1d19dc9e2e4f 8 weeks ago 192.7 MB
rocker/rstudio latest 14fad19147b6 8 weeks ago 787 MB
ubuntu latest d0955f21bf24 8 weeks ago 192.7 MB
busybox latest 4986bf8c1536 4 months ago 2.433 MB

How to get

$ docker search image-name
$ docker pull image-name

Wait!
I don’t want my images public!

Easy to make your own images (from tar files)

The docker hub is open source

Straightforward to start your own

How is it distributed?

Under the hood of images
Images are composed of layers

Images can share base layers:

ubuntu : 200 Mb

ubuntu + R : 250 Mb

ubuntu + matlab : 250 Mb

All three: 300 Mb.

Container vs. Image
Image is like Unix program on disk

read only, static

Container is like Unix process

Docker run starts a container from an image

Container states: like a condor job:

Running

Stopped

Containers
$ docker ps

CONTAINER ID IMAGE COMMAND NAMES
b71fff77e7b9 ubuntu:latest /bin/sleep owly_tannenba

shows running containers

$ docker ps –a
CONTAINER ID IMAGE COMMAND NAMES
b71fff77e7b9 ubuntu:latest /bin/sleep owly_tannenba
7eff0a4dd0b4 debian:jessie /bin/sleep owly_tannenba

Operations on Containers
$ docker ps –a

$ docker run …

$ docker stop containerId

$ docker restart containerId

$ docker rm containerId

Where is my output?

$ docker diff containerId
$ sudo docker diff 7bbb
C /dev
A /dev/kmsg
C /etc
D /foo
$ docker cp containerId:/path /host

Works on running or stopped containers

Or, use “volumes”

$ docker run –v /host:/container …

Volume is a directory that isn’t mapped

Output to volume goes directly to host

Fast: just a local mount

Why should you care?
› Reproducibilty

hHow many .so’s in /usr/lib64 do you use?

hWill a RHEL 6 app run on RHEL 9 in five years?

› Packaging
hImage is a great to package large software stacks

› Ease of inspection and management

› Imagine an OSG with container support!

Docker and HTCondor

New “docker universe”
h(not actually new universe id)

Installation of Docker universe

Need docker (maybe from EPEL)
$ yum install docker-io

Condor needs to be in the docker group!
$ useradd –G docker condor
$ service docker start

What? No Knobs?

Default install should require no condor
knobs!

But we have them anyway:

DOCKER = /usr/bin/docker

Condor startd detects docker

$ condor_status –l | grep –i docker
HasDocker = true
DockerVersion = "Docker version 1.5.0,
build a8a31ef/1.5.0“

$ condor_status –const HasDocker

Check StarterLog for error messages

Docker Universe
universe = docker
executable = /bin/my_executable
arguments = arg1
docker_image = deb7_and_HEP_stack
transfer_input_files = some_input
output = out
error = err
log = log
queue

Docker Universe Job
Is still a job

› Docker containers have the job-nature
hcondor_submit

hcondor_rm

hcondor_hold

hWrite entries to the user log event log

hcondor_dagman works with them

hPolicy expressions work.

hMatchmaking works

hUser prio / job prio / group quotas all work

hStdin, stdout, stderr work

hEtc. etc. etc.*

Docker Universe

universe = docker
executable = /bin/my_executable

Executable comes either from submit
machine or image

NEVER FROM execute machine!

Docker Universe

universe = docker
executable = /bin/my_executable

Executable can even be omitted!
trivia: true for what other universe?

(Images can name a default command)

Docker Universe
universe = docker
executable = ./my_executable
input_files = my_executable

If executable is transferred,
Executable copied from submit machine

(useful for scripts)

Docker Universe

universe = docker
executable = /bin/my_executable
docker_image =deb7_and_HEP_stack

Image is the name of the docker image stored on
execute machine. Condor will fetch it if needed.

Docker Universe

universe = docker
transfer_input_files= some_input

HTCondor can transfer input files from
submit machine into container

(same with output in reverse)

Condor’s use of Docker

Condor volume mounts the scratch dir

Condor sets the cwd of job to the scratch dir

Can’t see NFS mounted filesystems!

Condor runs the job with the usual uid rules.

Sets container name to

HTCJob_$(CLUSTER) _$(PROC)_slotName

Scratch dir == Volume

Means normal file xfer rules apply

transfer in, transfer out

subdirectory rule holds

condor_tail works

RequestDisk applies to scratch dir, not container

Any changes to the container are not xfered

Container is removed on job exit

Docker Resource limiting

RequestCpus = 4
RequestMemory = 1024M
RequestDisk = Somewhat ignored…

RequestCpus translated into cgroup shares
RequestMemory enforced

If exceeded, job gets OOM killed
job goes on hold

Why is my job on hold?
Docker couldn’t find image name:
$ condor_q -hold

-- Submitter: localhost : <127.0.0.1:49411?addrs=127.0.0.1:49411
> : localhost
 ID OWNER HELD_SINCE HOLD_REASON

 286.0 gthain 5/10 10:13 Error from slot1@localhost:
Cannot start container: invalid image name: debain

Exceeded memory limit?
Just like vanilla job with cgroups

› Admin-specified
hDOCKER_VOLUMES = A, B

hDOCKER_VOLUME_DIR_A = /path1

hDOCKER_VOLUME_DIR_B = /path2:ro

hDOCKER_MOUNT_VOLUMES = A, B

› HasDockerVolumesA = true

Custom Volume Mounts

45

Summary

Docker universe runs containers like jobs

Could be game-changing

Very interested in user feedback

	Slide 1
	Start with the Basics…
	Ancient History: Chroot
	Chroot: more trouble than value
	We gave up!
	Enter Docker!
	This is Docker
	Examples
	At the Command Line
	More CLI detail
	Images
	Where images come from
	Wait! I don’t want my images public!
	Under the hood of images
	Container vs. Image
	Containers
	Operations on Containers
	Where is my output?
	Or, use “volumes”
	Why should you care?
	Docker and HTCondor
	Installation of Docker universe
	What? No Knobs?
	Condor startd detects docker
	Docker Universe
	Docker Universe Job Is still a job
	Docker Universe
	Docker Universe
	Docker Universe
	Docker Universe
	Docker Universe
	Condor’s use of Docker
	Scratch dir == Volume
	Docker Resource limiting
	Why is my job on hold?
	Custom Volume Mounts
	Summary

