
Support for Vanilla Universe Checkpointing
Thomas Downes
University of Wisconsin-Milwaukee (LIGO)

Experimental feature!
All features discussed
are present in the
official 8.5 releases.

The Morgridge
Institute’s Board of
Ethics has decreed that
these features be
tested on willing
subjects only!

What is checkpointing?

• Saving sufficient state information to re-start execution without
losing much previous work (BADPUT)

• Existing support via condor_compile (“standard” universe)

• Vanilla universe support: encourage jobs to periodically save
sufficient state to disk and manage the migration of files

Construct policies that balance desire to minimize both BADPUT and
the time to reach fair-share population of running jobs

Why is checkpointing difficult?
• Context!

• State of process is a result of
explicit assumptions about its own prior actions

implicit assumptions about its running environment

• Fundamental problem
humans love context and introduce it everywhere!

computers… don’t

How vanilla universe checkpointing differs

Same as Standard Universe Differs

• Condor daemons send a signal to
request checkpoint or job can
checkpoint itself

• Can measure success of checkpoint,
time since last checkpoint, etc.

• Potentially less data transfer
• Greater need for users to know what

they are doing
• Job much more likely to choose to

checkpoint itself
• Checkpoint may occur well after

signal from Condor daemon
• Code signals checkpoint by exiting

(w/code) and restarts

Condor daemons should make fewer assumptions of success

Toy model (submit file)
output = out.log
error = error.log
log = log.log
executable = counting-ul
transfer_executable = true
should_transfer_files = true
universe = vanilla
transfer_input_files = input-file
transfer_output_files = saved-state
stream_output = true
stream_error = true
when_to_transfer_output = ON_EXIT_OR_EVICT
+WantCheckpointSignal = true
+CheckpointSig = "SIGUSR2”
+CheckpointExitBySignal = false
+CheckpointExitCode = 17
+WantFTOnCheckpoint = true
queue 1

Intend to support checkpoint
file transfer separately from job

output files!

The vanilla universe
checkpoint magic

Toy model (bash script)
#!/bin/bash

function PeriodicCheckpoint() {
 echo "Saving state on periodic checkpoint..."
 echo $i > saved-state
 exit 17
}

trap PeriodicCheckpoint SIGUSR2

i=0
if [-f saved-state]; then
 i=`cat saved-state`
fi
while [$i != 30]; do
 echo $i
 sleep 60
 i=$((i+1))
done

exit 0

Checkpointing real jobs

All the plumbing exists in 8.5 for
you to do this, too – provide
feedback to the Condor team!

Beyond experimental

• Decided to have fun with CRIU
Still very experimental!

Key steps run as root!

Handy RPC interface with Python bindings

• Containers are a tool for reducing
variation of job “context”

CRIU actively used by LXC/LXD

Candidate for Docker

Set up CRIU for non-superusers

• Modify CRIU log file permissions

--- a/criu/log.c
+++ b/criu/log.c
- new_logfd = open(output, O_CREAT|O_TRUNC|O_WRONLY|O_APPEND, 0600);
+ new_logfd = open(output, O_CREAT|O_TRUNC|O_WRONLY|O_APPEND, 0644);

• Compile normally (make && sudo make install-criu)

• Enable dumping w/o sudo by installing on each execute node with the
setuid bit

sudo chmod 4755 /usr/local/sbin/criu

• Enable restore with sudo, e.g.

thomas.downes ALL=(root) NOPASSWD:EXEC:/usr/local/sbin/criu

Example job that checkpoints itself
#!/usr/bin/python

import socket, os, sys, time
import rpc_pb2 as rpc
import errno

imgdir = 'images’

s = socket.socket(socket.AF_UNIX,
socket.SOCK_SEQPACKET)
s.connect('criu_pipe')

req = rpc.criu_req()
req.type = rpc.DUMP
req.opts.leave_running = True
req.opts.shell_job = True

req.opts.evasive_devices = True
req.opts.log_file = 'test.log’
req.opts.log_level = 5
req.opts.images_dir_fd =
os.open(imgdir, os.O_DIRECTORY)
s.send(req.SerializeToString())
resp = rpc.criu_resp()
resp.ParseFromString(s.recv(1024))

if resp.success:
 print 'Checkpointed!’
else:
 print 'Epic Fail!'

Writing a job that uses CRIU

• Write a wrapper
establishes CRIU named pipe for checkpointing operations

creates output directory for checkpoint images

[condor-test:pytest] criu service -d --address criu_pipe
[condor-test:pytest] [-d images] || mkdir images
[condor-test:pytest] python pytest.py
Checkpointed!
[condor-test:pytest] rm criu_pipe
[condor-test:pytest] sudo criu restore -D images –j
Checkpointed!

Condor introduces context
[condor-test:pytest] cat important-parts-of-submit
executable = pytest.sh
universe = vanilla
transfer_input_files = pytest.py,rpc_pb2.py
transfer_output_files = images
[condor-test:pytest] cat out.log
Checkpointed!
[condor-test:pytest] sudo criu restore -D images –j
1948: Error (files-reg.c:1524): Can't open file
var/lib/condor/execute/dir_1937/images on restore: No such file or
directory
1948: Error (files-reg.c:1466): Can't open file
var/lib/condor/execute/dir_1937/images: No such file or directory
Error (cr-restore.c:2226): Restoring FAILED.
[condor-test:pytest] sudo mkdir -p /var/lib/condor/execute/dir_17100/images
[condor-test:pytest] sudo criu restore -D images –j
code runs however stdout has been redirected from terminal

Try CRIU within Docker container!
• Create a Docker image with CRIU in it

[condor-test:test_image] cat Dockerfile
FROM ubuntu:16.04
ADD pytest.sh /usr/bin/pytest.sh
RUN apt-get update
RUN apt-get install --assume-yes libprotobuf-dev libprotobuf-c0-
dev protobuf-c-compiler protobuf-compiler python-protobuf libnl-
3-dev libaio-dev libcap-dev git gcc make pkg-config
RUN git clone https://github.com/xemul/criu
RUN cd criu && make && make install-criu
[condor-test:test_image] docker build –t testy .
[condor-test:pytest] cat changes-to-submit-file
universe = docker
docker_image = testy

Oh no!
• Condor mounts the job’s unique-ish working directory to same path within the

Docker container!

• Can’t be restored outside of Docker due to low PID #s (I can’t get
USE_PID_NAMESPACES to work at all w/CRIU)

• But, we can play the same trick we played outside of Docker...

[condor-test:pytest] sudo docker run -i --privileged=true -v
/home/thomas.downes/pytest/:/var/lib/condor/execute/dir_18595 -t testy
/bin/bash
root@18e4a60da4d7:/var/lib/condor/execute/dir_18595# criu restore -D images
–j
Error (util.c:658): exec failed: No such file or directory
Error (util.c:672): exited, status=1
Error (util.c:658): exec failed: No such file or directory
Error (util.c:672): exited, status=1 These error messages are red herrings. The

code executes!

Conclusions
• Vanilla universe checkpointing management is being

actively developed. Please contribute by testing 8.5!

• Tools like CRIU not quite ready for production, but closer
every year. Condor should get ready!

• Online evidence that LXC/LXD have pulled ahead of Docker
on adoption of checkpointing/migration w/CRIU.

	Slide 1
	Experimental feature!
	What is checkpointing?
	Why is checkpointing difficult?
	How vanilla universe checkpointing differs
	Toy model (submit file)
	Toy model (bash script)
	Checkpointing real jobs
	Beyond experimental
	Set up CRIU for non-superusers
	Example job that checkpoints itself
	Writing a job that uses CRIU
	Condor introduces context
	Try CRIU within Docker container!
	Oh no!
	Conclusions

