
The HTCondor
CacheD

Derek Weitzel, Brian Bockelman
University of Nebraska — Lincoln

Today’s Talk

• Today’s talk summarizes work for my a part of my
PhD Dissertation

• Also, this work has been accepted to PDPTA’15

HTCondor CacheD
• The CacheD puts an atomic file cache as a first

class citizen in HTCondor, next to jobs.

• A cache can be scheduled…

• … be evicted…

• … have requirements…

• … stored on worker nodes…

HTCondor CacheD

• Policy language for (proactive-)replication
preferences

• Ordered preferences for transfer method

• Bittorrent or Condor File Transfer

• CacheD parenting.

Replication Policy Language
• HTCondor CacheD allows you to specify a policy

language to match against other CacheDs.

• When creating the cache, you can say:

• Proactive replication can replicate to nodes while other
jobs are running — saving time when your job begins.

Replicate the cache on nodes with > X
cores, and with > Y disk space

Replication Policy Language

• On the other hand, you don’t have to do proactive
replication.

• Can force a cache to only be replicated when
requested for a job…

Replication Transfer Method
• Each cache can have a preference for transfer

method.

• Direct and Bittorrent are available by default.

• Direct — Using HTCondor File Transfer.
Authenticated and encrypted.

• Bittorrent — Using Bittorrent protocol via libtorrent 
 

Cache Protocol
1. Filetransfer requests local

replication

2. Local CacheD sends request
to it’s parent, or origin

3. Local CacheD downloads the
cache.

4. Filetransfer plugin checks
status of local cache

5. Upon local cache replication,
plugin downloads the cache

Request Cache
Replication

File Transfer
Plugin

Node Local
CacheD

Origin Cached

Request Cache
Replication

Notice of replication
complete

Wait

Download Cache

.

.

.

.

.
Request Cache

Replication

Notice of replication
complete

Download
Request

Symlink
Creation

Once on the node
• If the job slot belongs to a CacheD, then it will

symlink the cache into the execution directory.

• In the glidein case, a symlink cannot be used
between job slots on the same node.

• Instead, the CacheD Direct copies the cache
from the node local parent CacheD.

• Slot’s local CacheD copies into job’s execute
directory.

Parenting
• Each cache on a CacheD has a parent.

• Either it is the CacheD’s parent, or the origin.

Worker Node
CacheDs

Cluster CacheD

Cache OriginUser Submit
Server

Cluster A
CacheD

Cluster A
CacheDCluster A

CacheDCluster A
CacheDWorker Nodes

CacheD

Cluster A
CacheDCluster A

CacheDCluster A
CacheDWorker Nodes

CacheD

Parenting

• Bittorrent causes extremely high IO load on a
node.

• Every CacheD can parent to a node local CacheD
so only one will be using Bittorrent at a time.

• All children CacheD’s will copy the cache with
Direct transfer method.

Evaluation

• Since this is for my PhD on campus computing, we
first evaluated the CacheD against a local campus
cluster.

• Submitted a BLAST benchmark using the NR
database.

• Looked at Stage-in without cache, and with cache.

Stage-in — No Cache

• Measures the transfer speed of Bittorrent vs.
Direct HTCondor file transfers.

• Evaluated against number of distinct nodes
downloading a copy of the cache.

• Origin server for the tests has a 1Gbps connection.

Stage-in — No Cache
• Measured time required to stage-in 15GB of the NR

database vs. number of distinct nodes.

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

2000

4000

6000

20 30 40 50 60 70
Number of Distinct Nodes

St
ag

e−
in

 T
im

e
(s

ec
on

ds
)

Transfer Method
●● BitTorrent

Direct

Average Stage−in Time vs. Number of Distinct Nodes

Stage-in — No Cache
• The Direct method had a linear increase in average

stage-in time.

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

2000

4000

6000

20 30 40 50 60 70
Number of Distinct Nodes

St
ag

e−
in

 T
im

e
(s

ec
on

ds
)

Transfer Method
●● BitTorrent

Direct

Average Stage−in Time vs. Number of Distinct Nodes

Stage-in — No Cache
• Bittorrent had very small, if any, increase in transfer

time as the number of distinct nodes increases.

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

2000

4000

6000

20 30 40 50 60 70
Number of Distinct Nodes

St
ag

e−
in

 T
im

e
(s

ec
on

ds
)

Transfer Method
●● BitTorrent

Direct

Average Stage−in Time vs. Number of Distinct Nodes

Stage-in — Cached

• Ran varying number of jobs with same number of
available nodes (50).

• Measure the total stage-in time for the cache.

• Once the cache is stored on the node, replications
are quick.

Stage-in — Cached
• Noticeable curve at 50 — subsequent jobs have 0

stage-in time.

● ●● ●
● ●

●● ● ●●
●

●

0

100

200

300

0 50 100 150 200
Number of Jobs

St
ag

e−
in

 T
im

e
(h

ou
rs

)

Transfer Method
● Bittorrent

Direct
HTCondor File
Transfer

Stage−in Time vs. Number of Jobs

Stage-in — Cached
• Again, Bittorrent is faster than Direct and

HTCondor file transfer method.

● ●● ●
● ●

●● ● ●●
●

●

0

100

200

300

0 50 100 150 200
Number of Jobs

St
ag

e−
in

 T
im

e
(h

ou
rs

)

Transfer Method
● Bittorrent

Direct
HTCondor File
Transfer

Stage−in Time vs. Number of Jobs

Stage-in — Cached
• Caching significantly decreases stage-in time when

the there is a cache hit.

● ●● ●
● ●

●● ● ●●
●

●

0

100

200

300

0 50 100 150 200
Number of Jobs

St
ag

e−
in

 T
im

e
(h

ou
rs

)

Transfer Method
● Bittorrent

Direct
HTCondor File
Transfer

Stage−in Time vs. Number of Jobs

Additional Observations
• Bittorrent multiplies the available bandwidth to a

cache origin server.

Additional Observations
• Bittorrent multiplies the available bandwidth to a

cache origin server — Even on the OSG

Conclusions

• Bittorrent is a very efficient method for transferring
common files on a cluster.

• The CacheD is a flexible agent to store common
files for reuse.

• Currently running tests on the effectiveness of
using the CacheD on the Open Science Grid.

