
No Idle Cores
DYNAMIC LOAD BALANCING IN ATLAS & OTHER NEWS

WILLIAM STRECKER-KELLOGG <WILLSK@BNL.GOV>

RHIC/ATLAS Computing Facility

Overview
 Main HTCondor Pools

 STAR, PHENIX, ATLAS

 Each just over 15kCPU

 Running stable 8.2.7

 RHIC Pools

 Individual+Special Users

 Workload management done by
experiments

 ATLAS: Focus of this talk

 Local batch systems driven by
external workload manager (PANDA)

 Jobs are pilots

 Schedulingprovisioning

2

ATLAS Configuration

 Use Hierarchical Group Quotas +
Partitionable Slots

 My HTCondor Week talk last year
was all about this

 A short recap:

 PANDA Queues map to groups in a
hierarchical tree

 Leaf-nodes have jobs

 Surplus-sharing is selectively
allowed

 Group allocation controlled via
web-interface to DB

 Config file written when DB
changes

 All farm has one STARTD config

SLOT_TYPE_1=100%

NUM_SLOTS=1

NUM_SLOTS_TYPE_1=1

SLOT_TYPE_1_PARTITIONABLE=True

SlotWeight=Cpus

3

http://research.cs.wisc.edu/htcondor/HTCondorWeek2014/presentations/StreckerKelloggW-Multicore.pdf

Partitionable Slots

 Each batch node is configured to be partitioned into arbitrary slices

of CPUs

 Condor terminology:

 Partitionable slots are automatically sliced into dynamic slots

 Multicore jobs are thus accommodated with no administrative effort

 Only minimal (~1-2%) defragmentation necessary

 Empirically based on our farm—factors include cores/node, job sizes &

proportions, and runtimes. Something like

draining=(job-length*job-size^2)/(machine-size*%mcore*occupancy)

4

Defragmentation Policy

Defragmentation Daemon

 Start Defragmentation

 (PartitionableSlot &&
!Offline && TotalCpus > 12)

 End Defragmentation

 (Cpus >= 10)

 Rate: max 4/hr

Key change: Negotiator Policy

 Setting

NEGOTIATOR_POST_JOB_RANK

 Default policy is breadth-first filling

of equivalent machines

 (Kflops – SlotId)

 Depth-first filling preserves

continuous blocks longer

 (-Cpus)

5

PANDA Queues

 PANDA Queues

 One species of job per-queue

 Map to groups in our tree

 Currently two non-single-core

queues

 8-core ATHENA-MP

 2-core (Actually high-memory)

 No support yet for SlotWeight!=cpus

 Have 2Gb/core, so 4Gb jobs get 2
cores

6

ATLAS Tree Structure

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

7

Surplus Sharing

 Surplus sharing is controlled by boolean accept_surplus flag on

each queue

 Quotas are normalized in units of SlotWeight (CPUs)

 Groups with flag set to True can take unused slots from their siblings

 Parent groups with flag allow surplus to “flow down” the tree from their

siblings to their children

 Parent groups without accept_surplus flag constrain surplus-sharing to

among their children

8

Surplus Sharing

 Scenario: analysis has quota of

2000 and no accept_surplus; short

and long have a quota of 1000

each and accept_surplus on

 short=1600, long=400…possible

 short=1500, long=700…impossible

(violates analysis quota)

9

Where’s the problem? (it’s starvation)

 Everything works perfectly with all single-core, just set accpet_surplus

everywhere!

 However… Multicore jobs will not be able to compete for surplus

resources fairly

 Negotiation is greedy, if 7 slots are free, they won’t match an 8-core job

but will match 7 single-core jobs in the same cycle

 If any multicore queues compete for surplus with single core queues, the

multicore will always lose

 A solution outside Condor is needed

 Ultimate goal is to maximize farm utilization—No Idle Cores!

10

Dynamic Allocation

 A program to look at the current state of the demand in various

queues and set the surplus-flags appropriately

 Based on comparing “weight” of queues

 Weight defined as size of jobs in queue (# cores)

 Able to cope with any combination of demands

 Prevents starvation by allowing surplus into “heaviest” queues first

 Avoids both single-core and multicore queues competing for the same

resources

 Same algorithm is extensible up the tree to allow sharing between entire

subtrees

 Much credit to Mark Jensen (summer student in ‘14)

11

Balancing Algorithm

 Groups have the following

properties pertinent to the

algorithm

 Surplus flag

 Weight

 Threshold

 Demand

 If Demand > Threshold a queue is

considered for sharing

12

Balancing: Demand

 PANDA Queues are monitored for “activated” jobs

 Polling every 2 minutes

 Last hour is analyzed

 Midpoint sampling

 Moving average

 Spikes smoothed out

 Queue considered “loaded” if calculated demand > threshold

13

Extending Weight & Demand

 Leaf groups’ weights are the cores they need (8, 2, 1)

 How to extend beyond leaf-groups?

1. Define in custom priority order

2. Define as sum() or avg() of child groups’s weights

 Problem with 1. is you can’t guarantee starvation-free

 For now, manually set weights to match what would be the case for 2.

 For demand and threshold: easy—sum of child-groups values

14

Balancing: Weight

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8/50

1/5

2/100

1/600 1/200 1/150

1/1

2/800

3/300

2/1105

<weight>/<threshold>

15

Balancing: Weight

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8/50

1/5

2/100

1/600 1/200 1/150

1/1

2/800

3/300

2/1105 Priority order ==

desired order

<weight>/<threshold>

16

Algorithm

 The following algorithm is

implemented

1. For each sibling-group in DFS

order:

1. For each member in descending
weight order

1. Set to TRUE unless it does not have

demand and lower-weight groups

do

2. Break if set to TRUE

 In other words…

In each group of siblings, set

accept_surplus to TRUE for all the

highest-weighted groups that have

demand

17

Balancing: All Full

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2

18

Surplus ON

Balancing: No mc/hi

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2

19

Surplus ON

Balancing: No prod

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2

20

Surplus ON

Results 21

Wasted Slots

Results & Context

 Multicore is ready to take slack
from other production queues

 Spotty analysis-demand the past
few months has allowed many
millions of CPU-hours to go
unwasted

 If all ATLAS has a lull in demand,
OSG jobs can fill the farm

 Caveat: Preemption!

 Fast Negotiation

 Averages for last 3 days:

 Who is this useful for?

 Algorithm works for any tree

 Extensible beyond ATLAS where
work is structured outside of batch
system

 A multi-tenant service provide with
a hierarchy of priorities

 Really a problem of efficient
provisioning, not scheduling

 Constraints

 Workflow defined outside of
HTCondor

 Segregation of multicore in
separate queues for scheduling

22

Matches 14.99

Duration 7.05s

Desired Features & Future Work

Preemption

 Wish to maintain reasonably

minimum-runtime to grid jobs

 When ATLAS demand comes

back, need OSG jobs to be

evicted

 Require preempting the dynamic

slots that are created under the

partitionable one

 Work is progressing along these

lines, although final state is not

clear

SlotWeight != CPUs

 Would like to “value” RAM less

than CPUs for jobs

 High-memory kludge is inelegant

 Not extensible to different shaped

jobs (high-RAM/low-CPU, vice

versa)

 Tricky because total slot-weight of

the farm needs to be constant to

give meaning to quota allocation

23

The End
QUESTIONS? COMMENTS?

THANKS TO MARK JENSEN, AND THE HTCONDOR TEAM!

24

