
No Idle Cores
DYNAMIC LOAD BALANCING IN ATLAS & OTHER NEWS

WILLIAM STRECKER-KELLOGG <WILLSK@BNL.GOV>

RHIC/ATLAS Computing Facility

Overview
 Main HTCondor Pools

 STAR, PHENIX, ATLAS

 Each just over 15kCPU

 Running stable 8.2.7

 RHIC Pools

 Individual+Special Users

 Workload management done by
experiments

 ATLAS: Focus of this talk

 Local batch systems driven by
external workload manager (PANDA)

 Jobs are pilots

 Schedulingprovisioning

2

ATLAS Configuration

 Use Hierarchical Group Quotas +
Partitionable Slots

 My HTCondor Week talk last year
was all about this

 A short recap:

 PANDA Queues map to groups in a
hierarchical tree

 Leaf-nodes have jobs

 Surplus-sharing is selectively
allowed

 Group allocation controlled via
web-interface to DB

 Config file written when DB
changes

 All farm has one STARTD config

SLOT_TYPE_1=100%

NUM_SLOTS=1

NUM_SLOTS_TYPE_1=1

SLOT_TYPE_1_PARTITIONABLE=True

SlotWeight=Cpus

3

http://research.cs.wisc.edu/htcondor/HTCondorWeek2014/presentations/StreckerKelloggW-Multicore.pdf

Partitionable Slots

 Each batch node is configured to be partitioned into arbitrary slices

of CPUs

 Condor terminology:

 Partitionable slots are automatically sliced into dynamic slots

 Multicore jobs are thus accommodated with no administrative effort

 Only minimal (~1-2%) defragmentation necessary

 Empirically based on our farm—factors include cores/node, job sizes &

proportions, and runtimes. Something like

draining=(job-length*job-size^2)/(machine-size*%mcore*occupancy)

4

Defragmentation Policy

Defragmentation Daemon

 Start Defragmentation

 (PartitionableSlot &&
!Offline && TotalCpus > 12)

 End Defragmentation

 (Cpus >= 10)

 Rate: max 4/hr

Key change: Negotiator Policy

 Setting

NEGOTIATOR_POST_JOB_RANK

 Default policy is breadth-first filling

of equivalent machines

 (Kflops – SlotId)

 Depth-first filling preserves

continuous blocks longer

 (-Cpus)

5

PANDA Queues

 PANDA Queues

 One species of job per-queue

 Map to groups in our tree

 Currently two non-single-core

queues

 8-core ATHENA-MP

 2-core (Actually high-memory)

 No support yet for SlotWeight!=cpus

 Have 2Gb/core, so 4Gb jobs get 2
cores

6

ATLAS Tree Structure

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

7

Surplus Sharing

 Surplus sharing is controlled by boolean accept_surplus flag on

each queue

 Quotas are normalized in units of SlotWeight (CPUs)

 Groups with flag set to True can take unused slots from their siblings

 Parent groups with flag allow surplus to “flow down” the tree from their

siblings to their children

 Parent groups without accept_surplus flag constrain surplus-sharing to

among their children

8

Surplus Sharing

 Scenario: analysis has quota of

2000 and no accept_surplus; short

and long have a quota of 1000

each and accept_surplus on

 short=1600, long=400…possible

 short=1500, long=700…impossible

(violates analysis quota)

9

Where’s the problem? (it’s starvation)

 Everything works perfectly with all single-core, just set accpet_surplus

everywhere!

 However… Multicore jobs will not be able to compete for surplus

resources fairly

 Negotiation is greedy, if 7 slots are free, they won’t match an 8-core job

but will match 7 single-core jobs in the same cycle

 If any multicore queues compete for surplus with single core queues, the

multicore will always lose

 A solution outside Condor is needed

 Ultimate goal is to maximize farm utilization—No Idle Cores!

10

Dynamic Allocation

 A program to look at the current state of the demand in various

queues and set the surplus-flags appropriately

 Based on comparing “weight” of queues

 Weight defined as size of jobs in queue (# cores)

 Able to cope with any combination of demands

 Prevents starvation by allowing surplus into “heaviest” queues first

 Avoids both single-core and multicore queues competing for the same

resources

 Same algorithm is extensible up the tree to allow sharing between entire

subtrees

 Much credit to Mark Jensen (summer student in ‘14)

11

Balancing Algorithm

 Groups have the following

properties pertinent to the

algorithm

 Surplus flag

 Weight

 Threshold

 Demand

 If Demand > Threshold a queue is

considered for sharing

12

Balancing: Demand

 PANDA Queues are monitored for “activated” jobs

 Polling every 2 minutes

 Last hour is analyzed

 Midpoint sampling

 Moving average

 Spikes smoothed out

 Queue considered “loaded” if calculated demand > threshold

13

Extending Weight & Demand

 Leaf groups’ weights are the cores they need (8, 2, 1)

 How to extend beyond leaf-groups?

1. Define in custom priority order

2. Define as sum() or avg() of child groups’s weights

 Problem with 1. is you can’t guarantee starvation-free

 For now, manually set weights to match what would be the case for 2.

 For demand and threshold: easy—sum of child-groups values

14

Balancing: Weight

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8/50

1/5

2/100

1/600 1/200 1/150

1/1

2/800

3/300

2/1105

<weight>/<threshold>

15

Balancing: Weight

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8/50

1/5

2/100

1/600 1/200 1/150

1/1

2/800

3/300

2/1105 Priority order ==

desired order

<weight>/<threshold>

16

Algorithm

 The following algorithm is

implemented

1. For each sibling-group in DFS

order:

1. For each member in descending
weight order

1. Set to TRUE unless it does not have

demand and lower-weight groups

do

2. Break if set to TRUE

 In other words…

In each group of siblings, set

accept_surplus to TRUE for all the

highest-weighted groups that have

demand

17

Balancing: All Full

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2

18

Surplus ON

Balancing: No mc/hi

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2

19

Surplus ON

Balancing: No prod

atlas

analysis

prod

himem

single

mcore

short long

grid

<root>

sw

8

1

2

1 1
1

1

2

3

2

20

Surplus ON

Results 21

Wasted Slots

Results & Context

 Multicore is ready to take slack
from other production queues

 Spotty analysis-demand the past
few months has allowed many
millions of CPU-hours to go
unwasted

 If all ATLAS has a lull in demand,
OSG jobs can fill the farm

 Caveat: Preemption!

 Fast Negotiation

 Averages for last 3 days:

 Who is this useful for?

 Algorithm works for any tree

 Extensible beyond ATLAS where
work is structured outside of batch
system

 A multi-tenant service provide with
a hierarchy of priorities

 Really a problem of efficient
provisioning, not scheduling

 Constraints

 Workflow defined outside of
HTCondor

 Segregation of multicore in
separate queues for scheduling

22

Matches 14.99

Duration 7.05s

Desired Features & Future Work

Preemption

 Wish to maintain reasonably

minimum-runtime to grid jobs

 When ATLAS demand comes

back, need OSG jobs to be

evicted

 Require preempting the dynamic

slots that are created under the

partitionable one

 Work is progressing along these

lines, although final state is not

clear

SlotWeight != CPUs

 Would like to “value” RAM less

than CPUs for jobs

 High-memory kludge is inelegant

 Not extensible to different shaped

jobs (high-RAM/low-CPU, vice

versa)

 Tricky because total slot-weight of

the farm needs to be constant to

give meaning to quota allocation

23

The End
QUESTIONS? COMMENTS?

THANKS TO MARK JENSEN, AND THE HTCONDOR TEAM!

24

