
An Introduction to Using
HTCondor

2015

Karen Miller

The Team - 2014

Established in 1985,
to do research and development of distributed

high-throughput computing

2

HT Stands for High Throughput

Throughput: the quantity of work done by
an electronic computer in a given period of
time (Dictionary.com)

3

4

HTCondor: a flexible batch
queuing system

● Very configurable, adaptable
● Supports strong security methods
● Interoperates with many types of computing grids
● Manages both dedicated machines and non-

dedicated machines (for cycle scavenging)
● Fault-tolerant: can survive crashes, network outages,

any single point of failure

Your benefits
HTCondor will:
● Keep an eye on your jobs and keep you

posted on their progress
● Implement your policy on the execution order

of your jobs
● Log your job's activities
● Add fault tolerance to your jobs

6

Parameter Sweep Example
Run the program once for each value of a
variable.

1000 values is 1000 jobs

7

Each job needs resources when it runs:
● Up to 4 GBytes of RAM
● Uses 20 MBytes of input
● Requires 2 – 500 hours of computing time
● Produces up to 10 GBytes of output

8

Our scientist will be happy, since
HTCondor will make the completion of
the parameter sweep easy.

9

Definitions

Job
● the HTCondor representation of a piece of work
● like a Unix process
● can be an element of a workflow

ClassAd
● HTCondor’s internal data representation

Machine or Resource
● computers that can do the processing

10

More Definitions
Matchmaking

● associating a job with a machine resource
Central Manager

● central repository for the whole pool
● does matchmaking

Submit Host
● the computer from which jobs are submitted to

HTCondor
Execute Host

● the computer that runs a job

11

Jobs state their needs and preferences:
● Requirements (needs):

○ I require a Linux x86-64 platform
○ I require a machine with MATLAB installed

● Rank (preferences):
○ I prefer the machine with the most memory
○ I prefer a machine in the botany department

12

Machines specify needs and preferences:
● Requirements (needs):

○ Require that jobs run only when there is no
keyboard activity

○ Never run jobs belonging to Dr. No
● Rank (preferences):

○ This machine prefers to run Blast jobs

13

ClassAds
the language that HTCondor

uses to represent information
about:
jobs (job ClassAd),
machines (machine
ClassAd), and programs that
implement HTCondor's
functionality (called
daemons)

14

Part of a Job ClassAd
String

Integer

Boolean

Boolean
Expression

MyType = "Job"
TargetType = "Machine"
ClusterId = 1
ProcID = 0
IsPhysics = True
Owner = "chris"
Cmd = "science.exe"
Requirements = (Arch == "INTEL")

The Magic of Matchmaking
The matchmaker matches job ClassAds with

machine ClassAds, taking into account:
● Requirements of both the machine and the job
● Rank of both the job and the machine
● Priorities, such as those of users and groups

15

16

Getting Started

1. Choose a universe for the job
2. Make the job batch-ready, which

includes making the input data available
and accessible

3. Create a submit description file
4. Run condor_submit to put the job(s)

in the queue

17

1. Choose the Universe
Controls how HTCondor
handles jobs.

Some universes:
○ vanilla
○ vm
○ grid
○ java
○ parallel
○ standard

18

 Vanilla Universe

● For many “serial” jobs
● Provides automatic file

transfer for input and
output files

● Like vanilla ice cream,
can be used in just about
any situation

19

2. Make the job
batch-ready

● Must be able to run in
the background

● No interactive input
● No GUI/window clicks

20

Batch-Ready:
Standard Input & Output

Any job can still use stdin (keyboard),
stdout (screen) , and stderr , but files are
used instead of the actual devices.

Specification is similar to Unix shell redirect:
$./myprogram <input.txt >output.txt

21

Make the Data Available

HTCondor will transfer files from the submit host
to the execute host where the job runs. So, place
these files in a place where HTCondor can
access them.

HTCondor will also transfer result files back from the
execute host to the submit host

22

3. Create a
Submit Description File

● A plain ASCII text file
● File name extensions are irrelevant,

although many use .sub or .submit as
suffixes

● Describes the job

● Can describe many jobs at once (a
cluster), each with different input, output,
command line arguments, etc.

23

file name is science.sub
Lines beginning with a # are comments
Note: the commands on the left are not
case sensitive, but file names
(on the right) are!
universe = vanilla
executable = doscience
input = data.in
output = result.out
log = doscience.log
queue put 1 instance of the job in the queue

Simple Submit Description File

24

input = infile
Read job’s standard input from infile
Like shell command: $ program < infile

output = outfile
Write job’s standard output to outfile
Like shell command: $ program > outfile

error = errorfile
Write job’s standard error to errorfile
Like shell command: $ program 2> errorfile

25

Log the Job's Activities

In the submit description file:
log = doscience.log

● Creates a log of job events, appended with
all events as the job executes

● Good advice: always have a log file

26

Sample Portion of a Job Log
000 (0101.000.000) 05/25 19:10:03 Job submitted from host:
<128.105.146.14:1816>
...

001 (0101.000.000) 05/25 19:12:17 Job executing on host:
<128.105.146.14:1026>

...

005 (0101.000.000) 05/25 19:13:06 Job terminated.

(1) Normal termination (return value 0)

...

000, 001, and 005 are examples of event numbers.

27

4. Submit the Job
Run condor_submit, providing the name of

the submit description file:
 $ condor_submit science.sub
Submitting job(s).
1 job(s) submitted to cluster 100.

condor_submit will
● parse the submit description file, checking for errors
● create a ClassAd that describes the job(s)
● place the job(s) in the queue, which is an atomic

operation, with a two-phase commit

28

Observe Jobs in the Queue
$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> :

submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
2.0 toni 3/14 12:01 0+00:03:48 R 0 0.0 env
3.0 hawking 3/14 12:48 0+00:00:00 H 0 0.0 script.sh
4.0 hawking 3/14 12:48 0+00:00:00 H 0 0.0 script.sh
.
.
.
98.0 bohr 3/14 15:59 0+00:00:00 I 0 0.0 atoms H
99.0 bohr 3/14 15:59 0+00:00:00 I 0 0.0 atoms H
100.0 chris 3/14 16:32 0+00:00:00 I 0 0.0 doscience

100 jobs; 1 completed, 0 removed, 20 idle, 1 running, 77 held,
0 suspended

File Transfer

transfer_input_files specifies a list of
files to transfer from the submit machine to the
execute machine

transfer_output_files specifies a list of
files to transfer back from the execute machine
to the submit machine. If
transfer_output_files is not specified,
HTCondor will transfer back all new files in the
execute directory. Generally used to limit the
number files transferred.

More on File Transfer
Files need to get from the submit machine to the execute machine.

2 possibilities:
1. both machines have access to a shared file system
2. machines have separate file systems

should_transfer_files
= YES: transfer files to execute host
= NO: rely on shared file system
= IF_NEEDED: transfer the files, if the submit and execute

machine are not in the same file system domain
 (translation: use shared file system if available)

when_to_transfer_output
= ON_EXIT: transfer output files only when job completes
= ON_EXIT_OR_EVICT: transfer output files when job completes

or is evicted

31

File Transfer Example

changed science.sub file
universe = vanilla
executable = doscience
log = doscience.log
transfer_input_files = extra.dat
transfer_output_files = results.dat
should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT
queue

32

Command Line Arguments
universe = vanilla
executable = doscience
arguments = -c 299792458 –G 6.673e-112
. . .
queue

Invokes executable with
doscience –c 299792458 –G 6.673e-112

Look at the condor_submit man page to see
syntax for Arguments. This example has
argc = 5.

33

Job Id is
ClusterId.ProcId

● A set of related jobs is called a cluster
● Each cluster has a cluster number, an unsigned integer

value unique to the job queue on a submit host
● Each individual job within a cluster is given a process

number, and process numbers always start at zero
● A Job ID is the cluster number, a period, and the

process number. Examples:
○ Job ID = 20.0 cluster 20, process 0
○ Job IDs: 21.0, 21.1, 21.2 cluster 21, processes 0, 1, 2

ClassAd
attributes()

34

1 Cluster, 2 Jobs
universe = vanilla
executable = doscience

log = doscience_0.log
input = data_0.in
output = result_0.out
queue job 102.0
log = doscience_1.log
input = data_1.in
output = result_1.out
queue job 102.1

35

File Organization

Expand this to all 1000 jobs:
A logistical nightmare places all input, output,

and log files in one directory.
● 3 files × 1,000 jobs = 3,000 files
● The submit description file is 4,000+ lines

Too many files in 1 directory.

36

Better Organization
● Create a subdirectory for each job, intentionally

named
run_0, run_1, … run_999

● Implement the creation of directories with a program
(such as Python or Perl)

● Create or place input files in each of these
run_0/data.in
run_1/data.in
…
run_999/data.in

● The output and log files for each job will be
created by the job, when the job runs.

37

directory structure and contents
doscience

science.sub

run_999

run_0

Submitter or script
creates black-font

files

HTCondor
creates

purple-font
files

data.in

data.in

result.out

doscience.log

result.out

doscience.log

38

Better Submit Description File
Cluster of 1,000 jobs
universe = vanilla
executable = doscience
log = doscience.log
output = result.out
input = data.in
initialdir = run_0
queue job 103.0
initialdir = run_1
queue job 103.1

This file contains 998 more instances of
initialdir and queue.

39

WANTED: queue all instances of this job with the
single command:
queue 1000

40

Submit Description File Macros

Within the submit description file, HTCondor
supports automatic variables:

$(Process) will be expanded to be the same as the
ClassAd attribute ProcId for each job in the cluster.

For this example, values will be 0 – 999 for the 1,000
jobs.

41

Using $(Process)
● Specify the initial directory for each job

initialdir = run_$(Process)
becomes
 run_0, run_1, ..., run_999

● This automatic variable may be used other places
within the submit description file. For example,
specify command-line arguments
arguments = -n $(Process)
becomes

-n 0, -n 1, ..., -n 999

42

(Best) Submit Description File

Example: one cluster of 1000 jobs

universe = vanilla
executable = doscience
log = doscience.log
input = data.in
output = result.out
initialdir = run_$(Process)
queue 1000

43

Patience required to submit large
numbers of jobs

$ condor_submit science.sub
Submitting job(s)
.......................................
..................................

Logging submit event(s)
.......................................
.......................................
.......................................
......

1000 job(s) submitted to cluster 104.

44

the Job Queue

$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:

51883> : submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
104.1 chris 3/14 16:58 0+00:00:03 R 0 9.8 doscience
104.2 chris 3/14 16:58 0+00:00:01 I 0 9.8 doscience
104.3 chris 3/14 16:58 0+00:00:00 I 0 9.8 doscience
...
104.998 chris 3/14 16:58 0+00:00:00 I 0 9.8 doscience
104.999 chris 3/14 16:58 0+00:00:00 I 0 9.8 doscience

999 jobs; 998 idle, 1 running, 0 held

45

HTCondor watches over
the jobs, runs each one to
completion once, restarting
any that do not finish.

Time for a cold one!

46

More That You Do With HTCondor

47

Remove Jobs with condor_rm

● You can only remove jobs that you own
● Privileged user can remove any jobs

○ root on Linux
○ administrator on Windows

condor_rm 4 Removes all cluster 4 jobs
condor_rm 4.2 Removes only the job with

 job ID 4.2
condor_rm –a Removes all of your jobs.

 Careful !

48

Specify Job Requirements
● A boolean expression (syntax similar to C or Java)
● Evaluated with respect to attributes from machine

ClassAd(s)
● Must evaluate to True for a match to be made

universe = vanilla
executable = mathematica
...

requirements = (\
HasMathematicaInstalled =?= True)

queue

49

Specify Needed Resources
Automatically appended to job Requirements
request_memory – the amount of memory (in MB)

that the job needs to avoid excessive swapping
request_disk – the amount of disk space (in KB)

that the job needs. Will be sum of space for
executable, input files, output files and temporary
files. Default is size of initial sandbox (executable
plus input files).

request_cpus – the number of CPUs (cores) that
the job needs. Defaults to 1.

50

Specify Job Rank
● All matches which meet the requirements can be

sorted by preference with a Rank expression
○ Numerical
○ Higher rank values match first; a rank of 100 is

higher than a rank of 6
● Like Requirements, is evaluated against attributes

from machine ClassAds

universe = vanilla
executable = doscience
. . .
rank = (KFLOPS*10000) + Memory
queue 1000

51

Job Policy Expressions
● Do not remove if exits with a signal:

on_exit_remove = ExitBySignal == False

● Place on hold if exits with nonzero status or
ran for less than an hour:
on_exit_hold =
 ((ExitBySignal==False) && (ExitSignal != 0)) ||
 ((ServerStartTime - JobStartDate) < 3600)

● Place on hold if job has spent more than
50% of its time suspended:
periodic_hold =
 (CumulativeSuspensionTime >
 (RemoteWallClockTime / 2.0))

52

 Problems

 Solutions

53

Jobs Are Idle
Our scientist runs condor_q and finds all

jobs are idle:
$ condor_q
-- Submitter: x.cs.wisc.edu : <128.105.121.53:510>

:x.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
5.0 chris 3/14 12:23 0+00:00:00 I 0 9.8 doscience
5.1 chris 3/14 12:23 0+00:00:00 I 0 9.8 doscience
5.2 chris 3/14 12:23 0+00:00:00 I 0 9.8 doscience
5.3 chris 3/14 12:23 0+00:00:00 I 0 9.8 doscience
5.4 chris 3/14 12:23 0+00:00:00 I 0 9.8 doscience
5 jobs; 5 idle, 0 running, 0 held

54

Exercise a little patience

●On a busy pool, it can take
a while to match jobs to
machines, and then start
the jobs

●Wait at least a negotiation
cycle or two, typically a few
minutes

55

Look in the Job Log
The log will likely contain clues:
$ cat doscience.log
000 (005.000.000) 03/13 14:47:31 Job submitted from

host: <128.105.121.53:510>
...
007 (005.000.000) 03/13 15:02:00 Shadow exception!
 Error from starter on gig1.cs.wisc.edu:
 Failed to open '/scratch.

1/chris/workspace/test3/run_0/data.in' as standard
input: No such file or directory (errno 2)

 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
...

56

$ condor_status
Name OpSys Arch State Activity LoadAv Mem ActvtyTime
slot1@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 4599 0+00:10:13
slot2@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 1+19:10:36
slot3@c002.chtc.wi LINUX X86_64 Claimed Busy 0.990 1024 1+22:42:20
slot4@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:22:10
slot5@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:17:00
slot6@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:09:14
slot7@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+19:13:49
...
slot7@exec-2.chtc. WINDOWS INTEL Owner Idle 0.000 511 0+00:24:17
slot8@exec-2.chtc. WINDOWS INTEL Owner Idle 0.030 511 0+00:45:01

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/WINDOWS 104 78 16 10 0 0 0
 X86_64/LINUX 759 170 587 0 0 1 0

 Total 863 248 603 10 0 1 0

Check Machines' Status

57

Try: condor_q -analyze

$ condor_q -analyze 107.5
-- Submitter: crane.cs.wisc.edu : <128.105.136.32:

61610> : crane.cs.wisc.edu
User priority for max@crane.cs.wisc.edu is not
available, attempting to analyze without it.

107.005: Run analysis summary. Of 4 machines,
 0 are rejected by your job's requirements
 0 reject your job because of their own requirements
 4 match and are already running your jobs
 0 match but are serving other users
 0 are available to run your job

58

condor_q -analyze 102.1
-- Submitter: crane.cs.wisc.edu : <128.105.136.32:

61610> : crane.cs.wisc.edu
User priority for max@crane.cs.wisc.edu is not
available, attempting to analyze without it.

102.001: Run analysis summary. Of 3184 machines,
 3184 are rejected by your job's requirements
 0 reject your job because of their own requirements
 0 match and are already running your jobs
 0 match but are serving other users
 0 are available to run your job

WARNING: Be advised:
No resources matched request's constraints

59

The Requirements expression for your job is:
(TARGET.Arch == "X86_64") &&
(TARGET.OpSys == "WINDOWS") &&
(TARGET.Disk >= RequestDisk) &&
(TARGET.Memory >= RequestMemory) &&
(TARGET.HasFileTransfer)

Suggestions:
Condition Machines Matched Suggestion
--------- ---------------- ----------
1 (TARGET.OpSys == "WINDOWS") 0 MODIFY TO "LINUX"
2 (TARGET.Arch == "X86_64") 3137
3 (TARGET.Disk >= 1) 3184
4 (TARGET.Memory >= ifthenelse(MemoryUsage isnt
undefined,MemoryUsage,1)) 3184
5 (TARGET.HasFileTransfer) 3184

(continued)

60

Learn about available resources

$ condor_status –const 'Memory > 8192'
(no output means no matches)

$ condor_status -const 'Memory > 4096'
Name OpSys Arch State Activ LoadAv Mem ActvtyTime
slot1@c001.ch LINUX X86_64 Unclaimed Idle 0.000 5980 1+05:35:05
slot2@c001.ch LINUX X86_64 Unclaimed Idle 0.000 5980 13+05:37:03
slot3@c001.ch LINUX X86_64 Unclaimed Idle 0.000 7988 1+06:00:05
slot1@c002.ch LINUX X86_64 Unclaimed Idle 0.000 7988 13+06:03:47

 Total Owner Claimed Unclaimed Matched Preempting
 X86_64/LINUX 4 0 0 4 0 0
 Total 4 0 0 4 0 0

61

Lots of
Short-Running Jobs

Starting a job is somewhat expensive, in terms
of time (overhead). 2 items that might help:

1. Batch short jobs together
- write a wrapper script that will run a set of the jobs
in series
- the wrapper script becomes the job executable

2. There are some configuration variables that
may be able to help. Contact a staff person for
more info.

62

Interact With A Job
● Perhaps a job is running for much longer

than expected.
○ Is it stuck accessing a file?
○ Is it in an infinite loop?

● Try condor_ssh_to_job
○ Interactive debugging in Unix
○ Use ps, top, gdb, strace, lsof, …
○ Forward ports, X, transfer files, etc.
○ Currently not available on Windows

63

Interactive Debug Example
$ condor_q
-- Submitter: cosmos.phy.wisc.edu : <128.105.165.34:1027>

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 chris 4/18 06:52 1+12:10:05 R 0 10.0 doscience

1 jobs; 0 idle, 1 running, 0 held

$ condor_ssh_to_job 1.0

Welcome to slot4@c025.chtc.wisc.edu!
Your condor job is running with pid(s) 15603.

$ gdb –p 15603
. . .

64

After this tutorial, here are some places you
might find help:

1. HTCondor manual
2. htcondor-users mailing list

https://lists.cs.wisc.edu/mailmain/listinfo/htcondor-user

3. wiki
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki

4. developers

65

Other universes are better than

66

The more time a job
takes to run, the
higher the risk of
• being preempted by a

higher priority user or
job

• getting kicked off a
machine (vacated),
because the machine
has something else it
prefers to do

67

● Regularly while the job runs, or when the
job is to be kicked off the machine,
HTCondor takes a checkpoint -- the
complete state of the job.

● With a checkpoint, the job can be
matched to another machine, and
continue on.

Standard Universe

68

Standard Universe Features
● The job can read/write files as if they were

local with remote system calls (remote I/O)
● Programming language independent
● No source code changes are typically

required, but relinking the executable with
HTCondor's standard universe support
library is required.

69

Limitations
● HTCondor’s checkpoint mechanism is not at

the kernel level. Therefore, a standard
universe job may not :
○ fork()
○ Use kernel threads
○ Use some forms of IPC, such as pipes and

shared memory
● Must have access to object code in order to

relink
● Only available on some Linux platforms

70

Parallel Universe

● When multiple processes of a single job must be
running at the same time on different machines.

● Provides a mechanism for controlling parallel
algorithms
○ fault tolerant
○ allows for resources to come and go
○ ideal for computational grid environments

● Especially for MPI

71

MPI Job Submit Description File

MPI job submit description file
universe = parallel
executable = mp1script
arguments = my_mpich_linked_exe arg1 arg2
machine_count = 4
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = my_mpich_linked_exe
+ParallelShutdownPolicy = "WAIT_FOR_ALL"
queue

72

MPI jobs
Note: HTCondor will probably not schedule all of

the jobs on the same machine, so consider
using whole machine slots

See the HTCondor Wiki:
Under HOWTO Recipes for configuration, fancy

tricks,
"How to allow some jobs to claim the whole

machine instead of one slot"

73

VM Universe
● A virtual machine instance is the HTCondor job
● The vm universe offers

○ job sandboxing
○ checkpoint and migration
○ safe elevation of privileges
○ cross-platform submission

● HTCondor supports VMware, Xen, and KVM
● Input files can be imported as CD-ROM image
● When the VM shuts down, the modified disk

image is returned as job output

74

Machine Resources are
Numerous: The Grid

Given access (authorization) to grid resources ,
as well as certificates (for authentication) and
access to Globus or other resources at
remote institutions, HTCondor's grid universe
does the trick !

Grid Universe
● All specification is in the submit description file
● Supports many “back end” types:

○ Globus: GT2, GT5
○ NorduGrid
○ UNICORE
○ HTCondor
○ PBS
○ LSF
○ SGE
○ EC2
○ Deltacloud
○ Cream
○ GCE (Google Compute Engine)
○ BOINC

75

LSF®

76

Java Universe
More than
$ java mysimulator

● Knows which machines have a JVM installed
● Knows the location, version, and performance

of the JVM on each machine
● Knows about jar files, etc.
● Provides more information about Java job

completion than just a JVM exit code
○ Program runs in a Java wrapper, allowing

HTCondor to report Java exceptions, etc.

77

 Java Universe Example
sample java universe submit
description file
Universe = java
Executable = Main.class
jar_files = MyLibrary.jar
Input = infile
Output = outfile
Arguments = Main 1 2 3
Queue

78

Docker Universe

79

Docker Universe

Docker-capable execute host
the container is
an HTCondor
job

80

Docker Universe

81

Advanced Features

82

DAGMan specifies
dependencies between
jobs that can be
described by a DAG.

A

B C

D Interested? Attend Kent's
tutorial on managing workflows
with DAGMan.

83

Wanted:
Queue one job for each item in a list
queue 1 input in A.dat, B.dat, C.dat

Results in
 input = A.dat
 queue
 input = B.dat
 queue
 input = C.dat
 queue

list of 3 items

84

Wanted:
Queue one job for each file within a directory.
input = $(filename)
queue filename matching files dataset1/*

Results in
 input = dataset1/A.dat
 queue
 input = dataset1/B.dat
 queue
 input = dataset1/test35.dat
 queue
 . . .

file

globbing

85

In Review

With HTCondor’s help, both you and
scientist Chris can:
○ submit jobs
○ manage jobs
○ organize data files
○ identify aspects of universe choice

86

Thank you!
Check us out on the web:

http://www.research.wisc.edu/htcondor

Email:
htcondor-admin@cs.wisc.edu

Extra Slides with More
Information You Might Want to

Reference

88

Email as Feedback

• HTCondor may send
email about job events
to the submitting user

• Specify one of these in
the submit description
file:

notification = complete
notification = never
notification = error
notification = always Default

89

InitialDir
● Identifies a directory for file input and output.
● Also provides a directory (on the submit machine) for the

job log, when a full path is not specified.

Is relative to InitialDir

NOT relative to InitialDir

Example with InitialDir
Universe = vanilla
InitialDir = /home/einstein/cosmos/run
Executable = cosmos
Log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Transfer_Input_Files = cosmos.dat
Arguments = -f cosmos.dat
Queue

90

Substitution Macro
$$(<attribute>) will be replaced by the value of the

specified attribute from the machine ClassAd
Example:
Machine ClassAd has:
 CosmosData = "/local/cosmos/data"
Submit description file has
 Executable = cosmos
 Requirements = (CosmosData =!= UNDEFINED)
 Arguments = -d $$(CosmosData)
Results in the job invocation:
 cosmos –d /local/cosmos/data

91

Getting HTCondor
● Available as a free download from

http://research.cs.wisc.edu/htcondor
● Download HTCondor for your operating

system
○ Available for many modern Unix platforms

(including Linux and Apple’s OS/X)
○ Windows, many versions

● Repositories
○ YUM: RHEL 4, 5, and 6

$ yum install condor.x86_64
○ APT: Debian 6 and 7

$ apt-get install condor

92

HTCondor Releases
● Stable and Developer Releases

○ Version numbering scheme similar to that of the
(pre 2.6) Linux kernels …

● Numbering: major.minor.release
○ If minor is even (a.b.c): Stable series

■ Very stable, mostly bug fixes
■ Current: 8.0

○ If minor is odd (a.b.c): Developer series
■ New features, may have some bugs
■ Current: 8.1

93

General User Commands
condor_status View Pool Status
condor_q View Job Queue
condor_submit Submit new Jobs
condor_rm Remove Jobs
condor_prio Change a User Priority
condor_history Completed Job Info
condor_submit_dag Submit new DAG
condor_checkpoint Force taking a checkpoint
condor_compile Link HTCondor library with job

