
New condor_submit

features in HTCondor 8.3/8.4

John (TJ) Knoeller

Condor Week 2015

› One submit file – many jobs.

Process a bunch of similar files or directories

For simple cases - use python bindings for the

hard cases

› Address some usability issues

Reduce the need to wrap submit in a script

› Pick up some of the 8.2 config features

› Prepare the ground for future scalability

The goals

2

Universe = Vanilla

Executable = cook

Output = meal$(Process).out

Args = -i pasta

Queue

Args = -i chicken

Queue

› This produces 2 jobs in the same Cluster,

each with different arguments

Review – The way it works in 8.2

3

› In 8.3.5/8.4 This submit file can be

shortened to

Universe = Vanilla

Executable = cook

Output = meal$(Process).out

Args = -i $(Item)

Queue Item in (pasta, chicken)

› Identical results to the previous submit

The new way: Submit 'foreach'

4

Queue <N> <var> in (<item-list>)

Queue <N> <var> matching (<glob-list>)

Queue <N> <vars> from <filename>

Queue <N> <vars> from <script> |

Queue <N> <vars> from (

 <multiline-list>

)

› Iterate <items>, creating <N> jobs for each item

› In/from/matching keywords control how we get <items>

› This is not the full syntax description.

Many ways to Queue 'foreach'

5

› 'in' keyword indicates a literal item list

› List is comma and/or space separated

Items cannot contain commas or whitespace

Items are not otherwise interpreted

› If list begins with '(' it continues to the

closing ')'

Closing ')' must be on the first line, or on a line

by itself.

Queue in <item-list>

6

Args = $(Item)

Queue 2 in (alpha, beta delta gamma)

 Produces 8 jobs (2 for each item)

 It unrolls to this submit file:
Item=alpha

Step=0

Queue

Step=1

Queue

Item=beta

Step=0

Queue

 ...

Example: Queue in

7

› Refer to these variables in your submit file

$(Process) - goes from 0 to #Jobs-1

• Resets to 0 when $(Cluster) changes

$(Item) - current Item from <items>

• Exists only if <var> is not specified in Queue line

$(ItemIndex) - goes from 0 to #Items-1

$(Step) - goes from 0 to N-1 (repeatedly)

$(Row) - synonym for $(ItemIndex)

Automatic Loop Variables

8

› Each glob in <glob-list> is matched against

filenames relative to the current directory

› Each glob expands to zero or more names
 Globs that match nothing can produce errors or warnings

› Duplicate filenames are removed.
 Removal of duplicates can produce errors or warnings

 Resulting set of <items> is sorted alphabetically

› Some OS's don't support directory globbing

Queue matching <glob-list>

9

Queue 3 Item matching files (*.dat, m*)

› Produces 3 jobs for each file that matches

.dat or m (or both)

› Ignores directories because of optional

keyword 'files'

› $(Item) holds each filename in turn

Queue matching files

10

› New macro expansion: $F[pdnxq](Item)

Expands file parts from Item where p,d,n,x,

and q determine which parts:
p = all directories d = parent directory

n = basename x = extension with leading .

q = "" around result

› Suppose $(Item) is "/home/work/recipe.lst"
$Fp(Item) is /home/work/ $Fd(Item) is work/

$Fn(Item) is recipe $Fx(Item) is .lst

$Fnx(Item) is recipe.lst

$F(Item) is /home/work/recipe.lst

Manipulating filenames

11

Universe = Vanilla

Executable = $Fnx(Script)

InitialDir = $Fd(Script)

Queue Script matching files (work*/*.sh)

If current directory contains:
 work1/Fish.sh

 work1/Rice.sh

 work2/Bacon.sh

3 jobs will be submitted with:
 Executable = Fish.sh InitialDir = work1/

 Executable = Rice.sh InitialDir = work1/

 Executable = Bacon.sh InitialDir = work2/

Example: Queue matching files

12

Universe = Vanilla

Executable = $ENV(HOME)/cook.sh

Queue InitialDir matching dirs *

If current directory contains:
 Fish/

 Rice/

 Bacon!/

3 jobs will be submitted with:
 InitialDir = Fish/

 InitialDir = Rice/

 InitialDir = Bacon!/

Example: Queue matching dirs

13

Queue from <filename>

Read <filename> and treat lines as items

Queue from <script> |

Execute <script> and treat output lines as items

Queue from (

 <item>

 <item>

 ...

)

Read submit file, treating lines as items

Queue from : Lines are Items

14

Args = -m $(Method) -- $(Items)

Queue Method,Items from (

 Braise Carrots

 Grill Steak

 Bake Bread Cake

)

› Produces 3 jobs, one for each line

› each line is tokenized on space and/or comma

until all but last variable have a value.

› Last variable gets remainder of the line.

Queue from allows multiple vars

15

Queue from (

 <item1>

 # <item2>

 ...

)

› When item list is read directly from the submit file,

the usual submit file rules for comments and line-

continuation apply.

 Lines that begin with # are ignored.

 Lines that end with \ are continued on the next line.

(remember that lines are items…)

Commenting out Queue items.

16

› Python style slice [start:end:step] syntax.

› Only jobs which have $(ItemIndex) within

the slice are submitted

Queue Item in [:1] (Alpha, Beta

 Delta Gamma

)

This slice selects only ItemIndex==0

so only Alpha jobs are submitted

Slicing

17

$INT(<name>|<math>[,<printf-format>])

$REAL(<name>|<math>[,<printf-format>])

Lookup <name> and evaluate it, or just

evaluate <math>.

› Result is printed using <printf-format>
Output = out_$INT(Process,%06d)

MyId = $(ItemIndex) + $(Step)/1000.0

Args = -id $REAL(MyId,%.4f) -delay $INT(12*60)

Output = out_000021

Args = -id 2.0010 -delay 720

Formatted Numbers

18

$CHOICE(<index-name>|<math>,<list-name>)

Lookup <index-name> and evaluate it, or just

evaluate <math>. Then use as an index into

<list-name> to extract a single item.

Args = $CHOICE(Step,Items)

Queue 2 Executable,Items from (

 Braise Carrots,Beets

 Grill Steak,Chicken

)

Choice

19

Queue 4*5 Item in (alpha beta)

For Queue <N>, <N> can be an expression

It can refer to command line attributes

> condor_submit cook.sub num=2

> cat cook.sub

...

Queue $(num:0)*2

<N> as expression

20

› Any argument with = in the middle is

treated as a submit attribute assignment

› Parsed before the submit file is read

Can be used in Queue or If statements

> condor_submit cook.sub trial=1

> cat cook.sub

Executable = cook

If $(trial)

 Hold = $(Process) > 0

endif

...

Command line attributes

21

› Only if submit file has no Queue statement

› It should be the last argument. because:

condor_submit cook.sub -queue in *.dat

› Item list can be read from standard input

dir /b *.dat | condor_submit cook.sub -que from -

Condor_submit -queue

22

condor_submit cook.sub -dry-run cook.ads

writes to job to cook.ads instead of Schedd

$(Cluster) is always 1

First Ad has all job attributes for ProcId=0

Remaining Ads have only attrs that differ

condor_submit cook.sub -dry -

Quickly see what Queue 'foreach' will do

Condor_submit -dry-run

23

condor_submit -maxjobs <number>

› Fail the submit if number of jobs would

exceed <number>

condor_submit -onecluster

› Fail the submit if more than one cluster

would be created

For automated submission tools like DAGMan

Circuit breakers

24

Any Questions?

25

