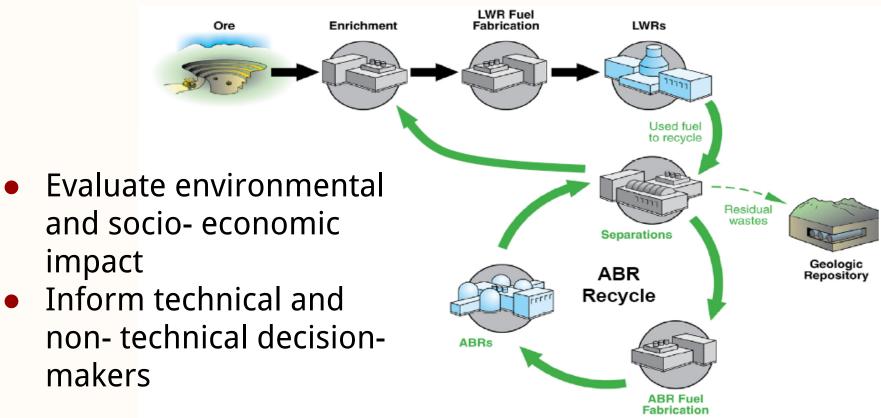


Exploring Nuclear Fuel Cycle (NFC) Simulation using HTCondor

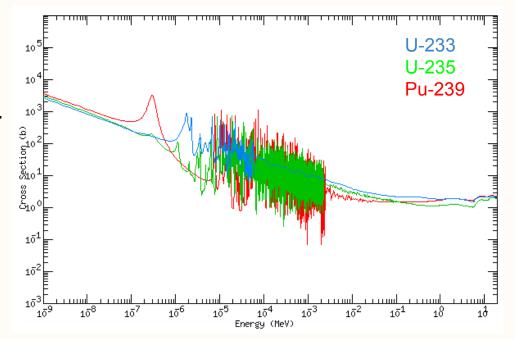
Matthew Gidden, Ph.D. HTCondor Week, 05/21/15

Fuel Cycle Simulator - Purpose


 Track mass flows and facility deployments during transition between alternative nuclear fuel cycles

Geologic Repository

Fuel Cycle Simulator - Purpose



Difficulties

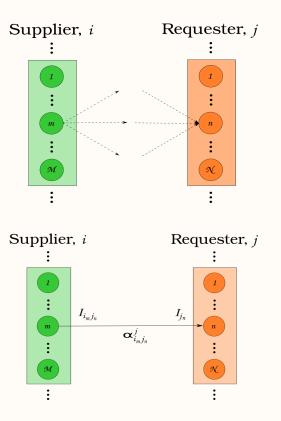
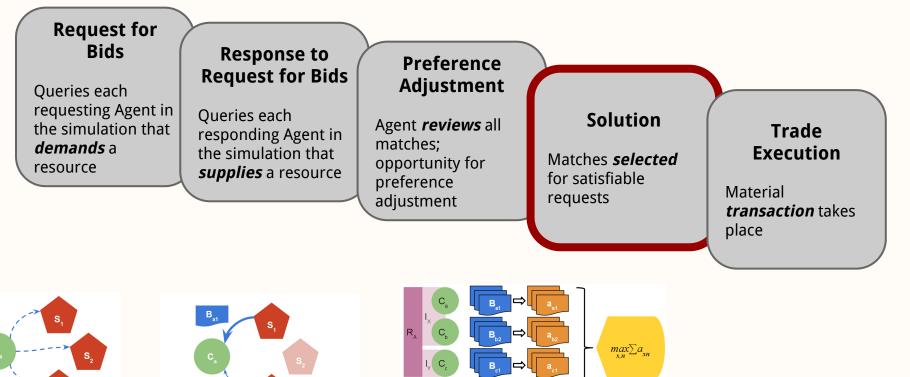

- Reactor performance depends on fuel <u>isotopics</u>
- Commodities are <u>fungible</u>
- Supply chain with recycling
- <u>"Unlimited</u>" possible fuel cycles

Fig: Fission Cross Section [1]

Dynamic Resource Exchange


- DRE: Core algorithm for fuel cycle simulation
- Supplier and requester agents
- Recomputed at each time step
- Solves economic problem dynamically; no hard-coded supply-demand behavior
- Enables complicated fuel cycles

DRE Phases

Õ

Phase 1: Request for bids

Phase 2: Response to request for bids

B_{a3}

Phase 3: Preference Adjustment

Phase 4: Market Resolution

DRE Constraints

- Agents define conversion functions for constraint coefficients
 - input: proposed resource quality
 - output: unit capacity coefficient

• Allows arbitrary physics/chemistry fidelity

$$\sum_{j \in J} f_{SWU}(\varepsilon_j) x_{i,j}^{EU} \leq s_{i,SWU}$$

$$\sum_{j \in J} f_{NU}(\varepsilon_j) x_{i,j}^{EU} \leq s_{i,NU}$$

$$\sum_{j \in J} f_{NU}(\varepsilon_j) x_{i,j}^{EU} \leq s_{i,NU}$$

NFC LP Formulation

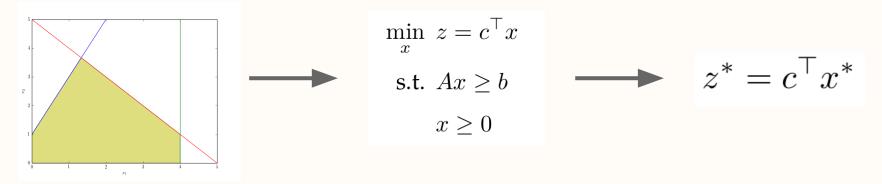
Variable	Description
H, h	Commodities
I, i	Bids
J, j	Requests
K, k	Capacities
С	Cost of commodity
X	Decision variable
β	Capacity coefficient
5	Supply capacity
d	Demand capacity

NFC MILP Formulation

Variable	Description	
H, h	Commodities	
I, i	Bids	
J, j	Requests	
K, k	Capacities	
С	Cost of commodity	
х, у	Decision variable	
β	Capacity coefficient	
S	Supply capacity	
d	Demand capacity	

$\min_{x,y} z = \sum_{h \in H} \sum_{i \in I} \sum_{j \in J_p} c_{i,j}^h x_{i,j}^h + \sum_{h \in H} \sum_{i \in I} \sum_{j \in J_e} c_{i,j}^h y_{i,j}^h \tilde{x}_j^h$	
s.t. $\sum_{j \in J_p} \beta_{i,k}(q_j^h) x_{i,j}^h + \sum_{j \in J_e} \beta_{i,k}(q_j^h) y_{i,j}^h \tilde{x}_j^h \le s_{i,k}^h$	
$\forall i \in I, \forall k \in K_i^h, \forall h \in H$	
$\sum_{i \in I} \sum_{h \in H_j} \beta_{i,k}(q_j^h) x_{i,j}^h \ge d_j(H_j)$	$\forall \ k \in K_j, \ \forall \ j \in J_p$
$\sum_{i \in I} \sum_{h \in H_j} \beta_{i,k}(q_j^h) y_{i,j}^h \tilde{x}_j^h \ge d_j(H_j)$	$\forall \ k \in K_j, \ \forall \ j \in J_e$
$\sum_{h \in H} \sum_{i \in I} y_{i,j}^h = 1$	$\forall j \in J_e$
$x_{i,j}^h \ge 0$	$\forall x \in X$
$y_{i,j}^h \in \{0,1\}$	$\forall \ y \in Y$

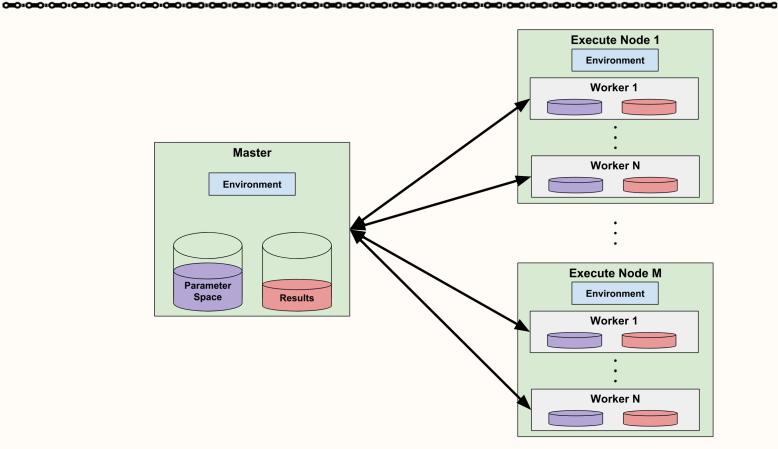
Simulation Behavior on Run Time



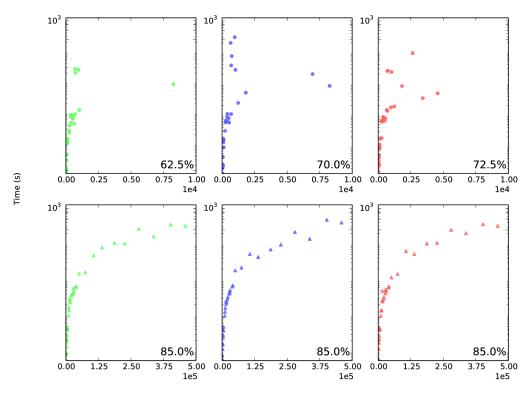
- Dynamic
 - population (problem size)
 - reactor fuel requirements (problem instance)
 - available fuel types (connectivity)
- Different fuel cycles
- Different solution techniques
 - Optimal solution
 - Relaxations
 - Heuristics

An Exploratory Tool

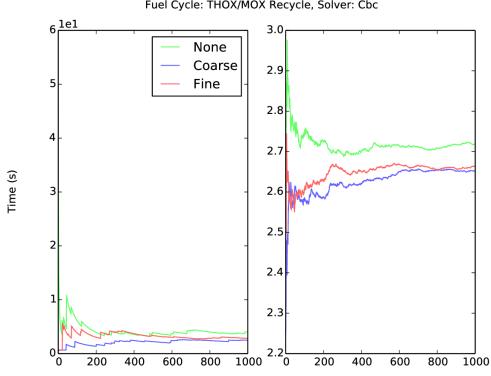
- mattgidden.com/cyclopts/
- Define bounds and discretization of parameter space
- Define a parameter->simulation->instance translation
- Provide a suite of solvers
- Can run locally or...


Using HTCondor

- Specify non-multithreaded nodes if timing study
- <u>workqueue</u> master-worker framework
- Master
 - parameter space database
 - <u>CDE</u> environment
 - queue of parameter points to solve
- Workers
 - translate point to simulation state and optimization instance
 - solve instance
 - o send back state, instance, and solution

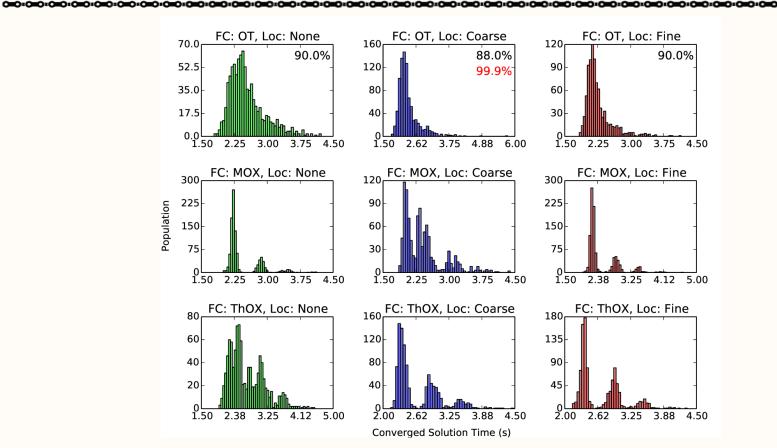

Using HTCondor

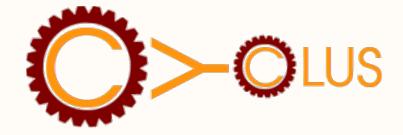
Scalability



Fuel Cycle: THOX/MOX Recycle, Solver: Cbc

Stochasticity





Fuel Cycle: THOX/MOX Recycle, Solver: Cbc

Stochasticity

Questions?

[1] Korea Atomic Energy Institute Table of Nuclides, <u>http:</u> //atom.kaeri.re.kr/, accessed 29-10-2014