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Who	
  am	
  I?	
  	
  What	
  is	
  LIGO?

• Former	
  Condor	
  Team	
  member	
  (’99-­‐’08).	
  
• Until	
  recently	
  at	
  Syracuse	
  University	
  (’10-­‐’15)	
  focused	
  on	
  
distributed	
  computing	
  problems	
  for	
  the	
  LIGO	
  Scientific	
  
Collaboration,	
  and	
  fostering	
  a	
  research	
  computing	
  
community	
  at	
  SU.	
  

• Now	
  working	
  directly	
  for	
  the	
  LIGO	
  Laboratory/Caltech,	
  with	
  a	
  
focus	
  on	
  data	
  analysis	
  computing,	
  particularly	
  optimization.	
  

• LIGO	
  (the	
  Laser	
  Interferometer	
  Gravitational-­‐Wave	
  
Observatory)	
  is	
  a	
  large	
  scientific	
  experiment	
  to	
  detect	
  cosmic	
  
gravitational	
  waves	
  and	
  harness	
  them	
  for	
  scientific	
  research.	
  

• http://ligo.org/

http://ligo.org/


Two Kinds of Optimization

• HPC — how to achieve more FLOPS on a core or 
socket 

• HTC — how to achieve more goodput-contributing 
FLOPY on a distributed network of heterogenous 
clusters managed and used by heterogenous 
humans 

• FLOPY != FLOPS * 365 * 24 * 60 * 60



HPC vs HTC
FLOPY = 

(HPC factors: FLOPS * 365 * 24 * 60 * 60) /  
(HTC factors for: un-utilized computing resources, job 
and workflow scheduling overhead, job and workflow 

scheduling unreliability, human mistakes, re-runs, 
time spent babysitting, priority inversions, etc.) 

• I’ve spent a career focused on the denominator. 

• But… it turns out FLOPS is still a first-order term in 
the numerator!  Who knew?!



My Last Year
• LIGO got thwacked by the NSF for proposing to spend a lot of money on 

computers without showing that our data analysis software pipelines were 
well-optimized and well-tailored for the resources on which we planned to 
run them. 

• Turns out they weren’t—at least not by HPC standards at that scale. 

• After a tremendous (ongoing) HPC-style optimization effort by many LIGO 
scientists and staff over the past year (with help from XSEDE staff @ 
TACC), we achieved a factor of ~8 reduction in estimated computational 
cost of our dominant data analysis pipeline, and a factor of ~6 in our next 
most expensive pipeline.  More work is in progress, and additional gains 
are likely. 

• 7/8 of a very big number… is a very big number.  The NSF is happy, 
LIGO is happy, kumbaya — as long as we don’t take our foot off the gas.



LIGO Computing 
Optimization Project

• Dedicated and expert LIGO Lab and LSC staff devoted to 
optimization.

• The developers of every LIGO search pipeline engaged.
• Regular scientific and computing management body 

attention.
• Optimization team developed good working relationships 

with key scientists and developers.
• Given the optimizations achieved over the past year by our 

most expensive codes, we have a clear roadmap for further 
improvement of those and other computationally expensive 
pipelines.
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HPC/FLOPS Optimization
• With effort and efficiency targets scaled to estimated computational 

cost, each LIGO software pipeline is being reviewed for potential 
for:
• Scientific optimizations: reconsideration of search parameters in 

terms of computational cost / scientific benefit. 
• Algorithmic optimizations: FFT, BLAS, custom search code.
• Compiler optimizations: gcc, icc, native instructions.
• Vectorization, SIMD optimizations: both automatic and hand-

tuned; looking ahead to AVX-512.
• Multi-threading optimizations: single-core vs all-core testing to 

estimate potential benefits of cache monopolization.
• GPU/MIC acceleration: high-level libraries and custom code.

• Our work over the past year has shown how fruitful each of 
these can be.
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Hardware Test Stands (CPU)
• CPU Testbeds @ Caltech, Syracuse University, and AEI-Hannover 

• Diverse range of AMD, Intel Westmere, Sandybridge, Haswell 
and Atom-based CPUs. 

• Available for dedicated use by search pipeline developers for 
optimization, benchmarking, profiling. 

• Supports trade study of metrics relevant to search code 
performance and deployment scenarios: 

• wide range of clock speeds, CPU and core parallelism, cache 
sizes, instruction sets, power efficiency, physical density, 
cost, etc. enables better understanding of the effects of each 
on code performance and cost-efficiency.
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GPU Memory 
Bandwidth 
(GB/sec)

Price 
(USD$)/
unit

GB/s/
$1.00

Power/
unit

GB/s/
Watt

GTX 980 224 $555 0.40 165 W 1.36

GTX 970 224 $329 0.68 145 W 1.54

GTX 960 112 $200 0.56 120 W 0.93

GTX 760 No 
longer available

192 $300 0.64 170 W 1.13

GTX 750 Ti 86 $139 0.62 60 W 1.43

GT 730 DDR5 40 $75 0.53 25 W 1.60

GT 580 No longer 
available

192 $225 0.84 244 W 0.79

Tesla m2090 No 
longer available

177 $700 0.26 225 W 0.79

Tesla K80 480 $5,000 0.09 235 W 2.04

Tesla K10 320 $2,000 0.16 225 W 1.42

Hardware Test Stands (GPU)
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• GPU and MIC Testbeds @ Caltech and Syracuse University 

• Working with NVIDIA on CUDA driver enhancements to improve 
commodity GPU performance: 

• e.g., mixed FP16/FP32 FFT: calculations in FP32, storage in FP16 

• LIGO being used as example use case for internal NVIDIA 
presentations.



GPU/MIC Acceleration (cont.)
• Preliminary GPU results for our dominant-cost pipeline, soon to be 

reviewed:
• Best-performing GPU card (GTX 980) delivers a factor of 3 higher 

search throughput than the best-performing CPU socket 
(E5-1660 v3).

• Initial consumer GPU RAM reliability testing encouraging, but even 
with worst-case redundant execution, GPUs may hold a significant 
cost-efficiency advantage.

• Naive “offloading” of generic algorithms to co-processors via standard 
libraries may benefit other search codes; custom implementations hold 
more promise at additional development cost.

• Co-processor optimization work can lead to a better understanding of 
optimization landscape more generally, leading to improvements in CPU 
code performance.  (E.g., consideration of in-place vs out-of-place FFTs.)
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Optimization Approach: 
“The Whole Patient”

• Performance Benchmarking and Computing Cost Estimation 
• Optimization of Scientific Search Parameters 
• Optimization of Data Analysis Methods and Algorithms 
• Optimization of Implementation (via Library, Compiler, Hand) 
• Hardware Trade Study, “Just in Time” Procurement 
• LIGO-Virgo Computing Network Scheduling Optimizations 
• Workflow Management & Robustness Optimizations 
• Flexibility & Opportunism Optimizations (run anywhere!) 
• Development, Testing, and Simulation Process Optimizations 
• Optimization Sustainability (Pipeline Reviews, Regression Testing) 
• Documentation, Training, Collaboration and External Engagement
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Practical HTHPC Scheduling Issues
• How to schedule CPU sockets (rather than cores) and ensure 

processes/threads never cross sockets. 
• How to schedule GPUs. 

• How to co-allocate CPU cores and GPUs, especially on high-
density CPU systems where # GPUs ~= # of cores? 

• Virtualization? 
• Soon: how to efficiently schedule workflows on a heterogenous mix 

of per-socket or per-GPU resources and single-core resources 
• Right now now a single workflow instance can’t easily use both 

opportunistically — you need to choose in advance. With 
enough work in the queue maybe this isn’t a problem—but it 
feels like something scientists should’t have to think about. 

• How to keep single-core jobs from starving per-socket jobs.



Optimization Challenges
• When does an investment in FLOPS start to return less than one in FLOPY, e.g.:  

• scheduler robustness? 
• workflow portability or workflow simplicity?  (these two can be in conflict!) 
• the capability to checkpoint & resume? 

• How to measure computational efficiency: 
• actual vs peak FLOPS of critical code kernels 
• CPU utilization over process lifetime 
• CPU utilization over job lifetime (includes scheduling and i/o overhead on 

compute node) 
• goodput vs badput of a job 
• goodput vs badput of a DAG/workflow (i.e., DAG re-runs… does anyone measure 

this?) 
• CPU core hours per year per science task. 
• Science results for $$$ spent on labor and hardware over some time period. 
• ???



LIGO and XSEDE/OSG
• LIGO wants to remain engaged with XSEDE:

• So we’re prepared to scale quickly if we need to.  (E.g.,“time to 
science”.)

• So we can continue to leverage XSEDE HPC expertise (ECSS).
• So we’re ready for (and can help define) evolving HTHPC computing 

models, post-O3.
• LIGO wants to re-engage with OSG:

• To bridge the LIGO-Virgo Computing Network (LVCN) to campus 
grids that wish to contribute computing resources to LIGO.

• To enable sharing of short-term LVCN surpluses.
• To drive portability of our data analysis software pipelines to non-

LVCN resources.
• To simplify future LVCN resource configuration and management.
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LIGO	
  View	
  of	
  XSEDE	
  HPC	
  Resources	
  (2014)



LIGO	
  View	
  of	
  LIGO	
  HTC	
  Computing	
  (2014)



LIGO Plans for HTHPC Computing (2015)


