
LIGO Computing
Optimization

Peter Couvares, LIGO Laboratory/Caltech

Condor Week 2015
May 21, 2015

Who	
 am	
 I?	
 	
 What	
 is	
 LIGO?

• Former	
 Condor	
 Team	
 member	
 (’99-­‐’08).	

• Until	
 recently	
 at	
 Syracuse	
 University	
 (’10-­‐’15)	
 focused	
 on	

distributed	
 computing	
 problems	
 for	
 the	
 LIGO	
 Scientific	

Collaboration,	
 and	
 fostering	
 a	
 research	
 computing	

community	
 at	
 SU.	

• Now	
 working	
 directly	
 for	
 the	
 LIGO	
 Laboratory/Caltech,	
 with	
 a	

focus	
 on	
 data	
 analysis	
 computing,	
 particularly	
 optimization.	

• LIGO	
 (the	
 Laser	
 Interferometer	
 Gravitational-­‐Wave	

Observatory)	
 is	
 a	
 large	
 scientific	
 experiment	
 to	
 detect	
 cosmic	

gravitational	
 waves	
 and	
 harness	
 them	
 for	
 scientific	
 research.	

• http://ligo.org/

http://ligo.org/

Two Kinds of Optimization

• HPC — how to achieve more FLOPS on a core or
socket

• HTC — how to achieve more goodput-contributing
FLOPY on a distributed network of heterogenous
clusters managed and used by heterogenous
humans

• FLOPY != FLOPS * 365 * 24 * 60 * 60

HPC vs HTC
FLOPY = 

(HPC factors: FLOPS * 365 * 24 * 60 * 60) /  
(HTC factors for: un-utilized computing resources, job
and workflow scheduling overhead, job and workflow

scheduling unreliability, human mistakes, re-runs,
time spent babysitting, priority inversions, etc.)

• I’ve spent a career focused on the denominator.

• But… it turns out FLOPS is still a first-order term in
the numerator! Who knew?!

My Last Year
• LIGO got thwacked by the NSF for proposing to spend a lot of money on

computers without showing that our data analysis software pipelines were
well-optimized and well-tailored for the resources on which we planned to
run them.

• Turns out they weren’t—at least not by HPC standards at that scale.

• After a tremendous (ongoing) HPC-style optimization effort by many LIGO
scientists and staff over the past year (with help from XSEDE staff @
TACC), we achieved a factor of ~8 reduction in estimated computational
cost of our dominant data analysis pipeline, and a factor of ~6 in our next
most expensive pipeline. More work is in progress, and additional gains
are likely.

• 7/8 of a very big number… is a very big number. The NSF is happy,
LIGO is happy, kumbaya — as long as we don’t take our foot off the gas.

LIGO Computing
Optimization Project

• Dedicated and expert LIGO Lab and LSC staff devoted to
optimization.

• The developers of every LIGO search pipeline engaged.
• Regular scientific and computing management body

attention.
• Optimization team developed good working relationships

with key scientists and developers.
• Given the optimizations achieved over the past year by our

most expensive codes, we have a clear roadmap for further
improvement of those and other computationally expensive
pipelines.

6

HPC/FLOPS Optimization
• With effort and efficiency targets scaled to estimated computational

cost, each LIGO software pipeline is being reviewed for potential
for:
• Scientific optimizations: reconsideration of search parameters in

terms of computational cost / scientific benefit.
• Algorithmic optimizations: FFT, BLAS, custom search code.
• Compiler optimizations: gcc, icc, native instructions.
• Vectorization, SIMD optimizations: both automatic and hand-

tuned; looking ahead to AVX-512.
• Multi-threading optimizations: single-core vs all-core testing to

estimate potential benefits of cache monopolization.
• GPU/MIC acceleration: high-level libraries and custom code.

• Our work over the past year has shown how fruitful each of
these can be.

7

Hardware Test Stands (CPU)
• CPU Testbeds @ Caltech, Syracuse University, and AEI-Hannover

• Diverse range of AMD, Intel Westmere, Sandybridge, Haswell
and Atom-based CPUs.

• Available for dedicated use by search pipeline developers for
optimization, benchmarking, profiling.

• Supports trade study of metrics relevant to search code
performance and deployment scenarios:

• wide range of clock speeds, CPU and core parallelism, cache
sizes, instruction sets, power efficiency, physical density,
cost, etc. enables better understanding of the effects of each
on code performance and cost-efficiency.

8

GPU Memory
Bandwidth
(GB/sec)

Price
(USD$)/
unit

GB/s/
$1.00

Power/
unit

GB/s/
Watt

GTX 980 224 $555 0.40 165 W 1.36

GTX 970 224 $329 0.68 145 W 1.54

GTX 960 112 $200 0.56 120 W 0.93

GTX 760 No
longer available

192 $300 0.64 170 W 1.13

GTX 750 Ti 86 $139 0.62 60 W 1.43

GT 730 DDR5 40 $75 0.53 25 W 1.60

GT 580 No longer
available

192 $225 0.84 244 W 0.79

Tesla m2090 No
longer available

177 $700 0.26 225 W 0.79

Tesla K80 480 $5,000 0.09 235 W 2.04

Tesla K10 320 $2,000 0.16 225 W 1.42

Hardware Test Stands (GPU)

9

• GPU and MIC Testbeds @ Caltech and Syracuse University

• Working with NVIDIA on CUDA driver enhancements to improve
commodity GPU performance:

• e.g., mixed FP16/FP32 FFT: calculations in FP32, storage in FP16

• LIGO being used as example use case for internal NVIDIA
presentations.

GPU/MIC Acceleration (cont.)
• Preliminary GPU results for our dominant-cost pipeline, soon to be

reviewed:
• Best-performing GPU card (GTX 980) delivers a factor of 3 higher

search throughput than the best-performing CPU socket
(E5-1660 v3).

• Initial consumer GPU RAM reliability testing encouraging, but even
with worst-case redundant execution, GPUs may hold a significant
cost-efficiency advantage.

• Naive “offloading” of generic algorithms to co-processors via standard
libraries may benefit other search codes; custom implementations hold
more promise at additional development cost.

• Co-processor optimization work can lead to a better understanding of
optimization landscape more generally, leading to improvements in CPU
code performance. (E.g., consideration of in-place vs out-of-place FFTs.)

10

Optimization Approach: 
“The Whole Patient”

• Performance Benchmarking and Computing Cost Estimation
• Optimization of Scientific Search Parameters
• Optimization of Data Analysis Methods and Algorithms
• Optimization of Implementation (via Library, Compiler, Hand)
• Hardware Trade Study, “Just in Time” Procurement
• LIGO-Virgo Computing Network Scheduling Optimizations
• Workflow Management & Robustness Optimizations
• Flexibility & Opportunism Optimizations (run anywhere!)
• Development, Testing, and Simulation Process Optimizations
• Optimization Sustainability (Pipeline Reviews, Regression Testing)
• Documentation, Training, Collaboration and External Engagement

11 8

Ite
ra

te

Practical HTHPC Scheduling Issues
• How to schedule CPU sockets (rather than cores) and ensure

processes/threads never cross sockets.
• How to schedule GPUs.

• How to co-allocate CPU cores and GPUs, especially on high-
density CPU systems where # GPUs ~= # of cores?

• Virtualization?
• Soon: how to efficiently schedule workflows on a heterogenous mix

of per-socket or per-GPU resources and single-core resources
• Right now now a single workflow instance can’t easily use both

opportunistically — you need to choose in advance. With
enough work in the queue maybe this isn’t a problem—but it
feels like something scientists should’t have to think about.

• How to keep single-core jobs from starving per-socket jobs.

Optimization Challenges
• When does an investment in FLOPS start to return less than one in FLOPY, e.g.:

• scheduler robustness?
• workflow portability or workflow simplicity? (these two can be in conflict!)
• the capability to checkpoint & resume?

• How to measure computational efficiency:
• actual vs peak FLOPS of critical code kernels
• CPU utilization over process lifetime
• CPU utilization over job lifetime (includes scheduling and i/o overhead on

compute node)
• goodput vs badput of a job
• goodput vs badput of a DAG/workflow (i.e., DAG re-runs… does anyone measure

this?)
• CPU core hours per year per science task.
• Science results for $$$ spent on labor and hardware over some time period.
• ???

LIGO and XSEDE/OSG
• LIGO wants to remain engaged with XSEDE:

• So we’re prepared to scale quickly if we need to. (E.g.,“time to
science”.)

• So we can continue to leverage XSEDE HPC expertise (ECSS).
• So we’re ready for (and can help define) evolving HTHPC computing

models, post-O3.
• LIGO wants to re-engage with OSG:

• To bridge the LIGO-Virgo Computing Network (LVCN) to campus
grids that wish to contribute computing resources to LIGO.

• To enable sharing of short-term LVCN surpluses.
• To drive portability of our data analysis software pipelines to non-

LVCN resources.
• To simplify future LVCN resource configuration and management.

14

LIGO	
 View	
 of	
 XSEDE	
 HPC	
 Resources	
 (2014)

LIGO	
 View	
 of	
 LIGO	
 HTC	
 Computing	
 (2014)

LIGO Plans for HTHPC Computing (2015)

