
Lincoln Bryant

Suchandra Thapa
HTCondor Week 2015

May 21, 2015

A Year of HTCondor

Monitoring

Analytics vs. Operations

● Two parallel tracks in mind:

o Operations

o Analytics

● Operations needs to:

o Observe trends.

o Be alerted and respond to problems.

● Analytics needs to:

o Store and retrieve the full ClassAds of every job.

o Perform deep queries over the entire history of jobs.

Motivations

● For OSG Connect, we want to:

o track HTCondor status

o discover job profiles of various users to determine

what resources users are need

o determine when user jobs are failing and help users to

correct failures

o create dashboards to provide high-level overviews

o open our monitoring up to end-users

o be alerted when there are problems

● Existing tools like Cycleserver, Cacti, Ganglia, etc.. did

not adequately cover our use case

Operations

● Real-time graphing for time series data

● Open source, developed by Orbitz

● Three main components:

o Whisper - Data format, replacement for RRD

o Carbon - Listener daemon

o Front-end - Web interface for metrics

● Dead simple protocol

o Open socket, fire off metrics in the form of:

path.to.metric <value> <timestamp>

Graphite

Graphite home page: http://graphite.wikidot.com/

● To try it out, you can just parse the output of

“condor_q” into the desired format

● Then, simply use netcat to send it to the Graphite

server

#!/bin/bash

metric=”htcondor.running”

value=$(condor_q | grep R | wc -l)

timestamp=$(date +%s)

echo ”$metric $value $timestamp” | nc \

 graphite.yourdomain.edu 2003

Sending HTCondor stats

● Run the script with cron:

A simple first metric

● Parsing condor_q output is a heavyweight and

potentially fragile operation

o Especially if you do it once a minute

o Be prepared for gaps in the data if your schedd is

super busy

● What to do then?

o Ask the daemons directly with the Python bindings!

Problems with parsing

import classad, htcondor

coll = htcondor.Collector("htcondor.domain.edu")

slotState = coll.query(htcondor.AdTypes.Startd,

"true",['Name','JobId','State','RemoteOwner','COLLECTOR_HOST_STRI

NG'])

for slot in slotState[:]:

 if (slot['State'] == "Claimed"):

 slot_claimed += 1

print "condor.claimed "+ str(slot_claimed) + " " + str(timestamp)

Collecting Collector stats via Python

● Here we ask the collector for slots in “claimed” state

and sum them up:

Sample HTCondor Collector summary

● Fire off a cron & come back to a nice plot:

● Graphite is nice, but static PNGs are so Web 1.0

● Fortunately, Graphite can export raw JSON instead

● Grafana is an overlay for Graphite that renders the

JSON data using flot

o Nice HTML / Javascript-based graphs

o Admins can quickly assemble dashboards,

carousels, etc

o Saved dashboards are backed by nosql database

● All stored Graphite metrics should work out of the box

Grafana

Grafana home page: http://grafana.org/

flot home page: http://www.flotcharts.org/

http://grafana.org/
http://grafana.org/
http://www.flotcharts.org/
http://www.flotcharts.org/

Sample dashboard

Sample dashboard

An example trend

● A user’s jobs were rapidly flipping between idle and

running. Why?

● Turns out to be a problematic job with an aggressive

periodic release:

periodic_release = ((CurrentTime - EnteredCurrentStatus) > 60)

(Credit to Mats Rynge for pointing this out)

● Nominally a continuous integration tool for building

software

● Easily configured to submit simple Condor jobs instead

● Behaves similar to a real user

o Grabs latest functional tests via git

o Runs “condor_submit” for a simple job

o Checks for correct output, notifies upon failure

● Plethora of integrations for notifying sysops of

problems:

o Email, IRC, XMPP, SMS, Slack, etc.

Active monitoring with Jenkins

● Dashboard gives a reassuring all-clear:

● Slack integration logs & notifies support team of

problems:

Jenkins monitoring samples

● Using the HTCondor Python bindings for monitoring is

just as easy, if not easier, than scraping

condor_{q,status}

● If you plan to have a lot of metrics, the sooner you

move to SSD(s), the better

● Weird oscillatory patterns, sudden drops in running

jobs, huge spikes in idle jobs can all be indicative of

problems

● Continuous active testing + alerting infrastructure is key

for catching problems before end-users do

Operations - Lessons learned

Analytics

In the beginning...

● We started with a summer project where students

would be visualizing HTCondor job data

● To speed up startup, we wrote a small python script

(~50 lines) that queried HTCondor for history

information and added any new records to a

MongoDB server
o Intended so that students would have an existing data source

o Ended up being used for much longer

Initial data visualization efforts

● Had a few students working on visualizing data over

last summer
o Generated a few visualizations using MongoDB and other

sources

o Tried importing data from MongoDB to Elasticsearch using

Kibana

o Used a few visualizations for a while but eventually stopped due

to maintenance required

● Created a homebrew system using MongoDB,

python, highcharts and cherrypy

Current setup

● Probes to collect condor history from log file

and to check the schedd every minute

● Redis server for pub/sub channels for probes

● Logstash to follow Redis channels and to

insert data into Elasticsearch

● Elasticsearch cluster for storage and queries

● Kibana for user and operational dashboards,

RStudio/python scripts for more complicated

analytics

Indexing job history information

Python script polls the

history logs periodically

for new entries and

publishes this to a Redis

channel.

Classads get published

to a channel on the

Redis server and read by

Logstash

Due to size of classads

on Elasticsearch and

because ES only works

on data in memory, data

goes into a new index

each month

Indexing schedd data

Python script is run

every minute by a

cronjob and collects

classads for all jobs.

The complete set of

job classads is put

into an ES index for

that week. Script

also inserts a record

with number of jobs

in each state into

another ES index.

Querying/Visualizing information

● All of this information is good, but need a way

of querying and visualizing it

● Luckily, Elasticsearch integrates with Kibana

which provides a web interface for

querying/visualization

Kibana Overview

Query

field Hits over time Sampling of documents

found

Time range

selector

Plotting/Dashboards with Kibana

Can also

generate plots of

data with Kibana

as well as

dashboards

Plots and

dashboards can

be exported!

Some (potentially interesting) plots

● Queries/plots developed in Kibana, data

exported as csv file and plotted using

RStudio/ggplot

Average number of job starts over

time

94% of jobs

succeed on first

attempt

Note: most jobs

use periodic hold

and period release

ClassAds to retry

failed jobs

Thus invalid

submissions may

result in multiple

restarts, inflating

this number

Average job duration on compute

node

Plot of the

average job

duration on

compute nodes,

majority of jobs

complete within

an hour with a

few projects

having outliers

(mean: 1050s,

median: 657s)

Average bytes transferred per job using

HTCondor

Most jobs transfer

significantly less

than 1GB per job

through HTCondor

(mean: 214MB,

median: 71MB)

Note: this does not

take into account

data transferred by

other methods (e.g.

wget)

Memory usage

Most jobs use less

than 2GB of memory

with proteomics and

snoplus projects

having the highest

average memory

utilization

Mean use: 378 MB

Median use: 118 MB

Other uses

● Analytics framework is not just for dashboards

and pretty plots

● Can also be used to troubleshoot issues

Troubleshooting a job

In November 2014,

there was a spike in the

number of restarts,

would like to investigate

this and see if we can

determine the cause

and fix

Troubleshooting part 2

Select the time range in

question

Split out the projects

with the most

restarts

algdock

project

seems to be

responsible

for most of

the restarts

Troubleshooting concluded
Next, we go to the discover tab in Kibana and search for records in the relevant time frame and look

at the classads, it quickly becomes apparently that the problem is due to a missing output file that

results in the job being held combined with a PeriodicRelease for the job

Future directions

● Update schedd probe to use LogReader API

to get classad updates rather than querying

schedd for all classads

● More and better analytics:
o Explore data more and pull out analytics that are

useful for operational needs

o Update user dashboards to present information that

users are interested in

Links

● Github repo - https://github.com/DHTC-

Tools/logstash-confs/tree/master/condor

https://github.com/DHTC-Tools/logstash-confs/tree/master/condor
https://github.com/DHTC-Tools/logstash-confs/tree/master/condor
https://github.com/DHTC-Tools/logstash-confs/tree/master/condor
https://github.com/DHTC-Tools/logstash-confs/tree/master/condor
https://github.com/DHTC-Tools/logstash-confs/tree/master/condor
https://github.com/DHTC-Tools/logstash-confs/tree/master/condor

Questions? Comments?

