
The History And Future
of the Python Bindings

Brian Bockelman
HTCondor Week 2015

WARNING
This is not a tutorial. This is a tutorial:

http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/
presentations/Bockelman_Python.pdf

http://research.cs.wisc.edu/htcondor/HTCondorWeek2014/
presentations/TheisenT-Python.pdf

This is an attempt to explain what the heck the python
bindings are!

http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/Bockelman_Python.pdf
http://research.cs.wisc.edu/htcondor/HTCondorWeek2014/presentations/TheisenT-Python.pdf

HTCondor Clients in 2012

Command Line Clients

Fully Featured!

Requires fork/exec and process
handling

Outputs in multiple formats

SOAP Clients

Features! (Some)

Language agnostic (everyone
hates XML equally?)

Caveats with respect to
scalability, security.

Something
Missing

In
The

Middle

“Someday I want to play
with boost.python. I

heard it was really nice”
- Dan Bradley (paraphrased)

July 12, 2012

Why Python?
• Plausible to do “on the side”: Clear, straightforward bridge

to C++

• HTCondor doesn’t have a “library”, so SWIG isn’t useful.

• All could be done in C++; no python in python bindings.

• Anecdotally, one of the most popular sysadmin and
integrator scripting languages.

• … because I wanted to!

commit 5b95904e4963735628bbdd681d96b9f639c4f535
Author: Brian Bockelman <bbockelm@cse.unl.edu>
Date: Wed Dec 26 17:02:17 2012 -0600

 First version of the ClassAd wrapper library.

commit a3e0bb1e7bebe16aef0c94ba966789843b330a11
Author: Brian Bockelman <bbockelm@cse.unl.edu>
Date: Fri Jan 4 21:35:49 2013 -0600

 Add tests for old-ad parsing/printing and exprtree lookup.

31 commits later

Start reading up on
boost.python around Christmas

One Week Later

• On January 3, moved from github into
condor_contrib.

• Released with 7.9.4 on February 20, 2013.

• April 22, moved from condor_contrib to HTCondor
core.

Design Philosophy
• ClassAds: Everything based on ClassAds; make these the “core” of the

bindings.

• pythonic: Semantics and APIs should feel natural to a python programmer.

• Use iterators, exceptions, guards. ClassAds behave as much like a dict as
reasonable.

• Backward compatible: APIs are here to stay for as long as possible.

• When we absolutely must, use standard python DeprecationWarning
techniques.

• Native code: Call same HTCondor library code as CLI; identical in performance.

• Complete: If you can do it with the command line tools, you should be able to
do it with python.

Base Features
• The first year of python bindings focused on:

• Representing ClassAds: ClassAd and expressions as a
python object; lazy-evaluation of expressions; natural
conversions between equivalent ClassAd and python types.

• Scheduler Interaction: Nuts-n-bolts - querying jobs,
submitting jobs, hold/remove.

• Collector Interaction: Query for ads, locate daemon(s).

• Already quite powerful! The most commonly used functions
are likely from the first year of work.

Advanced Features
• More complete ClassAd bindings: esoteric topics like composing expressions

from python, symmetricMatch, flatten, internalRefs.

• Implement missing dictionary-like methods (e.g., update, setdefault, items).

• Most other methods silently convert dictionaries to ClassAds.

• Python functions can be registered for use by HTCondor daemon
expressions.

• Negotiator: Retrieve & change priorities. Get / update resource usage.

• Schedd: history queries, refreshGSIProxy, transactions

• Generic Daemons: Remote daemon parameter get/set. Directly query
daemon for ads.

Don’t memorize this slide - simply evidence that we take our
“complete” goal seriously!

Schedd Transaction API
• One powerful concept in HTCondor is the two-phase commit.

Provides consistency: prevents jobs from being in an unknown
“half-submitted” state.

• The power of this isn’t well-exposed from the CLI tools, but one
secret power of HTCondor.

• But transactions are now a first-class citizen!

• Everything within a transaction succeeds or fails.

• Changes can be made durable (fsync) or non-durable.

with schedd.transaction() as txn:
 schedd.submit(ad, 5)
 schedd.edit(“1234.5”, “foo”, 4)

Logs, Oh My!
• If you want job status without putting load on the schedd, you

need to parse/follow the logs. These are a complex format;
luckily, HTCondor has a handy reader implementation:

• LogReader: Parse event objects (ClassAds) from a user/job
log file

• EventReader: Parse event objects from the schedd-wide
log. Low-level & requires privileged access - but extremely
powerful. Useful if you want to mirror/monitor entire schedd.

• You can use these in blocking (wait for events) or non-blocking
mode. Can be used in event loops.

Improved Daemon
Integration

• Python bindings started as targeting the “one-off” scripts that admins commonly write.

• However, they are starting to pop up more frequently in daemons. It’s often useful to make
these user-written daemons behave more like a HTCondor daemon.

• We’re starting to see a bit of this already:

• Locks: Implements the same locking logic in use by HTCondor. Useful if you need a write-
lock on a log file to prevent the schedd from appending to it. CMS uses this to safely edit
DAGMan log files.

• dprintf from python: Access to the HTCondor logging subsystem.

• send_alive: implements the child heartbeat protocol for condor_master.

• set_subsystem: Act like a specific subsystem with respect to configuration or logging
policies. Useful if you want to see schedd-specific configs.

• This is enough to write a simple HTCondor-like daemon that runs under the condor_master.
However, this is just a preview of the line of thought…

Things That Happen With
Age

• The python bindings are now old enough we have started to
recognize design flaws. Example: classad.parse() method.

• This is supposed to parse a single ClassAd from text
input.

• What happens if you feed the method multiple ClassAds?

• Currently: if parsing “new-style ads”, ignore “rest” of
text.

• If parsing “old-style ads”, throw exception on “rest” of
text.

Things That Happen With
Age

• Proposal: Sane, consistent parsing APIs:

• parseAds (existing): Input text or file, return an iterator of ads.

• parseNext (8.5.x?): Input file-like object, return the next ad, advancing the file
iterator.

• parseOne (8.5.x?): Input text, return a single ad - merging all ads in input
together.

• This will be our first big test of a function deprecation. Our goal is to have uses of
parse raise a DeprecationWarning.

• Note - python2.7 suppresses these warnings by default. We will override this
depending on the HTCondor config knob ENABLE_DEPRECATION_WARNINGS.

• Food for though: If this scheme is introduced in 8.5, should we remove ‘parse’
in 8.6.0 or 8.8.0?

Here Lie The Dragons

Future - Submit Language
• The first time a user toys with Schedd.submit, they learn of the wide gulf

between the condor_submit language and job ClassAds (python uses
the latter).

• Many simple things in the submit language are awkward in the
ClassAd.

• condor_submit is surprisingly heavy-weight, auto-filling many
attributes for you. Python users are on their own!

• Goal: Get condor_submit to behave like a library so I can invoke it directly
from python. Both languages can be used by the python bindings.

• The submit language is not very natural inside python (like ClassAds
is). A pythonic API is going to be tough!

Future - CEDAR?
• HTCondor daemons all speak the same binary transport and application

protocol, CEDAR. Provides basis for HTCondor security and message-
passing semantics.

• I would like to provide python bindings for CEDAR.

• Why? CEDAR is the ‘assembly language’ for inter-daemon
communication.

• Prototype even wilder ideas such as making the match a first-class
citizen in python.

• Can “fuzz” daemons - possibly useful for testing?

• Brian’s longtime dream: I can write a script that manually plucks an
unclaimed startd from the collector and hand it to a schedd.

Future - DaemonCore?
• All common HTCondor daemons are written to use the same core event

loop - “DaemonCore”.

• One of about a dozen event loop implementations, but this provides the
lovable behaviors and quirks of HTCondor.

• Python is starting to standardize event loop APIs.

• Could we expose DaemonCore as one of these?

• Co-routines allow you to write code that looks blocking but behaves non-
blocking.

• For inspiration, see: https://docs.python.org/3/library/asyncio.html

• Will require python 3.4, so this is an “aspirational” and long-term.

https://docs.python.org/3/library/asyncio.html

Where can you help?
• The only thing better than feedback are patches!

• Places I’d love help:

• (Better) python3 support.

• Add more unit tests.

• Get unit tests run inside the HTCondor tests.

• Better/more examples in the documentation.

