
HTCondor and Workflows:
Advanced Tutorial

HTCondor Week 2014
Kent Wenger

Workflows in HTCondor

●This talk: techniques &
features

●Please ask questions!

Example workflow

...10k...

Preparation

Simulation

Analysis

NOOP?

CleanupFinal

4

How big?
› We have users running

500k-job workflows in
production (user hit 2.2 GB
DAG file bug)

› Depends on resources on
submit machine (memory,
max. open files)

› “Tricks” can decrease
resource requirements (talk
to me)

Pretty big!

5

Defining a DAG to DAGMan

A DAG input file defines a DAG:

file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D

Organization of files and
directories

Files and directories

●By default, all paths in a DAG input file and
the associated submit files are relative to
the current working directory when
condor_submit_dag is run.

●Modified by DIR directive on JOB command
●Also by -usedagdir on
condor_submit_dag command line

Nodes in subdirectories

NodeA
A.sub
A.in1
A.pre
A.post
...

NodeB
B.sub
B.in1
B.pre
B.post
...

Top
my.dag

my.dag:
Job A A.sub Dir NodeA
Script Pre A A.pre
Job B B.sub Dir NodeB
...
A.sub
...
input = A.in1
...

in Top:
condor_submit_dag my.dag

DAGs in subdirectories

Dag1
my.dag
A.sub
B.sub
A.in
...

Top

Dag1/my.dag:
Job A A.sub
Job B B.sub
...

in Top:
condor_submit_dag
 -usedagdir
 Dag1/my.dag
 Dag2/my.dag ...

Dag2
my.dag
A.sub
B.sub
A.in
...

Multiple independent jobs

●Why use DAGMan?:
● Throttling
● Retry of failed jobs
● Rescue DAG
● PRE/POST scripts
● Submit file re-use

●DAG file has JOB commands but not
PARENT...CHILD

Rescue DAGs

12

Rescue DAGs (cont)

Run

Not run

A

B1

D

B2 B3

C1 C2 C3

13

Rescue DAGs (cont)
› Save the state of a partially-completed DAG
› Created when a node fails or the
condor_dagman job is removed with
condor_rm or when DAG is halted and all
queued jobs finish
DAGMan makes as much progress as possible in the

face of failed nodes
› DAGMan immediately exits after writing a rescue

DAG file
› Automatically run when you re-run the original

DAG (unless –f is passed to
condor_submit_dag)

Rescue DAGs (cont)
› The Rescue DAG file, by default, is only a partial

DAG file.
› A partial Rescue DAG file contains only

information about which nodes are done, and the
number of retries remaining for nodes with retries.

› Does not contain information such as the actual
DAG structure and the specification of the submit
file for each node job.

› Partial Rescue DAGs are automatically parsed in
combination with the original DAG file, which
contains information such as the DAG structure.

14

Rescue DAGs (cont)

› If you change something in the original
DAG file, such as changing the submit file
for a node job, that change will take effect
when running a partial rescue DAG.

15

16

Rescue DAG naming

› DagFile.rescue001, DagFile.rescue002,
etc.

› Up to 100 by default (last is overwritten once you
hit the limit)

› Newest is run automatically when you re-submit
the original DagFile

› condor_submit_dag -dorescuefrom number to
run specific rescue DAG
Newer rescue DAGs are renamed

DAGMan configuration

18

DAGMan configuration (cont)

› A few dozen DAGMan-specific
configuration macros (see the manual…)

› From lowest to highest precedence
HTCondor configuration files
User’s environment variables:

• _CONDOR_macroname
DAG-specific configuration file (preferable)
condor_submit_dag command line

19

Per-DAG configuration
› In DAG input file:
CONFIG ConfigFileName
or command line:
condor_submit_dag –config
ConfigFileName ...

› Generally prefer CONFIG in DAG file over
condor_submit_dag -config or individual
arguments

› Specifying more than one configuration file is
an error.

Per-DAG configuration (cont)

› Configuration entries not related to
DAGMan are ignored

› Syntax like any other HTCondor config file
file name: bar.dag
CONFIG bar.config

file name: bar.config
DAGMAN_ALWAYS_RUN_POST = False
DAGMAN_MAX_SUBMIT_ATTEMPTS = 2

20

Configuration: workflow log file

●DAGMan now uses a single log file for all
node jobs

●Put workflow log file on local disk
●DAGMAN_DEFAULT_NODE_LOG
●In 8.1(/8.2): changes for global config

● @(DAG_DIR)/@(DAG_FILE).nodes.log
● /localdisk/@(DAG_FILE).nodes.log

Pre skip

DAG node with scripts:
PRE_SKIP

› Allows PRE script to immediately declare node successful
(job and POST script are not run)

› In the DAG input file:
JOB A A.cmd
SCRIPT PRE A A.pre
PRE_SKIP A non-zero_integer

› If the PRE script of A exits with the indicated value, the
node succeeds immediately, and the node job and POST
script are skipped.

› If the PRE script fails with a different value, the node job is
skipped, and the POST script runs (as if PRE_SKIP were
not specified).

23

DAG node with scripts:
PRE_SKIP (cont)

› When the POST script runs, the
$PRE_SCRIPT_RETURN variable contains
the return value from the PRE script. (See
manual for specific cases)

24

No-op nodes

No-op nodes (cont)

› Appending the keyword NOOP causes a job
to not be run, without affecting the DAG
structure.

› The PRE and POST scripts of NOOP
nodes will be run. If this is not desired,
comment them out.

› Can be used to test DAG structure

26

No-op nodes (ex)

› Here is an example:
file name: diamond.dag
Job A a.submit NOOP
Job B b.submit NOOP
Job C c.submit NOOP
Job D d.submit NOOP
Parent A Child B C
Parent B C Child D

› Submitting this to DAGMan will cause
DAGMan to exercise the DAG, without
actually running node jobs.

27

No-op nodes (ex 2)
Simplify dag structure

NOOP

29

Node retries

› For possibly transient errors
› Before a node is marked as failed. . .

Retry N times. In the DAG file:
Retry C 4
(to retry node C four times before calling the node

failed)
Retry N times, unless a node returns specific exit

code. In the DAG file:
Retry C 4 UNLESS-EXIT 2

30

Node retries, continued
› Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value:

node fails

One node failure:
retry

Out of retries:
node fails

Node variables

32

Node variables (cont)
› To re-use submit files
› In DAG input file:
VARS JobName varname="value"
[varname="value"...]

› In submit description file:
$(varname)

› varname can only contain alphanumeric characters
and underscore

› varname cannot begin with “queue”
› varname is not case-sensitive
› varname beginning with “+” defines classad attribute

(e.g., +State = “Wisconsin”)

Node variables (cont)

› Value cannot contain single quotes;
double quotes must be escaped

› The variable $(JOB)contains the DAG
node name

› $(RETRY) contains retry count
› Any number of VARS values per node
› DAGMan warns if a VAR name is defined

more than once for a node

33

Node variables (ex)

foo.dag
Job B10 B.sub
Vars B10 infile=”B_in.10”
Vars B10 +myattr=”4321”

B.sub
input = $(infile)
arguments = $$([myattr])

Nested DAGs

36

Nested DAGs (cont)

37

Nested DAGs (cont)
› Runs the sub-DAG as a job within the top-level

DAG
› In the DAG input file:
SUBDAG EXTERNAL JobName DagFileName

› Any number of levels
› Sub-DAG nodes are like any other (can have

PRE/POST scripts, retries, DIR, etc.)
› Each sub-DAG has its own DAGMan

Separate throttles for each sub-DAG
Separate rescue DAGs

Why nested DAGs?

› DAG re-use
› Scalability
› Re-try more than one node
› Short-circuit parts of the workflow
› Dynamic workflow modification (sub-DAGs

can be created “on the fly”)

38

Splices

40

Splices (cont)

› Directly includes splice DAG’s nodes within
the top-level DAG

› In the DAG input file:
SPLICE JobName DagFileName

› Splices can be nested (and combined with
sub-DAGs)

Why splices?
●DAG re-use
●Advantages of splices over sub-DAGs:

● Reduced overhead (single DAGMan instance)
● Simplicity (e.g., single rescue DAG)
● Throttles apply across entire workflow

●Limitations of splices:
● Splices cannot have PRE and POST scripts (for

now)
● No retries
● Splice DAGs must exist at submit time

Throttling

43

Throttling (cont)
› Limit load on submit machine and pool

Maxjobs limits jobs in queue

Maxidle submit jobs until idle limit is hit
• Can get more idle jobs if jobs are evicted

Maxpre limits PRE scripts
Maxpost limits POST scripts

› All limits are per DAGMan, not global for the
pool or submit machine

› Limits can be specified as arguments to
condor_submit_dag or in configuration

Node categories

45

Node categories (cont)

Setup

Cleanup

Big job

Small jobSmall jobSmall job

Big job

Small jobSmall jobSmall job

Big job

Small jobSmall jobSmall job

46

Node category throttles

› Useful with different types of jobs that cause
different loads

› In the DAG input file:
CATEGORY JobName CategoryName
MAXJOBS CategoryName MaxJobsValue

› Applies the MaxJobsValue setting to only jobs
assigned to the given category

› Global throttles still apply

47

Cross-splice node categories

› Prefix category name with “+”
MaxJobs +init 2
Category A +init

› See the Splice section in the manual for
details

Node priorities

49

Node priorities (cont)

› In the DAG input file:
PRIORITY JobName PriorityValue

› Determines order of submission of ready
nodes

› DAG node priorities are copied to job
priorities (including sub-DAGs)

› Does not violate or change DAG semantics
› Higher numerical value equals “better”

priority

Node priorities (cont)

› Better priority nodes are not guaranteed to
run first!

› Effective node prio = max(explicit node
prio, parents' effective prios, DAG prio)

› For sub-DAGs, pretend that the sub-DAG is
spliced in.

› Overrides priority in node job submit file

50

Node priorities (upcoming
changes)

●Priority change to DAGMan job “trickles
down” to nodes

●Different “inheritance” policy:
● Effective node prio = explicit node prio +

DAG prio?
● Effective node prio = average(explicit node

prio, parents' effective prios, DAG prio)?

52

DAG abort

●In DAG input file:
ABORT-DAG-ON JobName AbortExitValue
[RETURN DagReturnValue]

●If node value is AbortExitValue, the
entire DAG is aborted, implying that
queued node jobs are removed, and a
rescue DAG is created.

●Can be used for conditionally skipping nodes
(especially with sub-DAGs)

FINAL nodes

FINAL nodes (cont)

› FINAL node always runs at end of DAG
(even on failure)

› Use FINAL in place of JOB in DAG file
› At most one FINAL node per DAG
› FINAL nodes cannot have parents or

children (but can have PRE/POST scripts)

54

FINAL nodes (cont)

› Success or failure of the FINAL node
determines the success of the entire DAG

› PRE and POST scripts of FINAL (and
other) nodes can use $DAG_STATUS and
$FAILED_COUNT to determine the state of
the workflow

› $(DAG_STATUS) and $(FAILED_COUNT)
in available in VARS

55

Advanced workflow monitoring

Status in DAGMan’s ClassAd
> condor_q -l 59 | grep DAG_
DAG_Status = 0
DAG_InRecovery = 0
DAG_NodesUnready = 1
DAG_NodesReady = 4
DAG_NodesPrerun = 2
DAG_NodesQueued = 1
DAG_NodesPostrun = 1
DAG_NodesDone = 3
DAG_NodesFailed = 0
DAG_NodesTotal = 12

› Sub-DAGs count as one node
› New in 7.9.5

57

58

Node status file

› Shows a snapshot of workflow state
Overwritten as the workflow runs
Updated atomically

› In the DAG input file:
NODE_STATUS_FILE statusFileName
[minimumUpdateTime]

› Not enabled by default
› As of 8.1.6, in ClassAd format (a set of ClassAds)

Node status file contents
[
 Type = "DagStatus";
 DagFiles = {
 "job_dagman_node_status.dag"
 };
 Timestamp = 1397683160; /* "Wed Apr 16 16:19:20

2014" */
 DagStatus = 3; /* "STATUS_SUBMITTED ()" */
 NodesTotal = 12;
 NodesDone = 0;
 NodesPre = 0;
 NodesQueued = 1;
 ...

Node status file contents (cont)
[
 Type = "NodeStatus";
 Node = "C";
 NodeStatus = 6; /* "STATUS_ERROR" */
 StatusDetails = "Job proc (1980.0.0)
failed with status 5";

 RetryCount = 2;
 JobProcsQueued = 0;
 JobProcsHeld = 0;
]

61

Jobstate.log file

› Shows workflow history
› Meant to be machine-readable (for Pegasus)
› Basically a subset of the dagman.out file
› In the DAG input file:
JOBSTATE_LOG JobstateLogFileName

› Not enabled by default

62

Jobstate.log contents

1302884424 INTERNAL *** DAGMAN_STARTED 48.0

1302884436 NodeA PRE_SCRIPT_STARTED - local
- 1

1302884436 NodeA PRE_SCRIPT_SUCCESS - local
- 1

1302884438 NodeA SUBMIT 49.0 local - 1
1302884438 NodeA SUBMIT 49.1 local - 1
1302884438 NodeA EXECUTE 49.0 local - 1
1302884438 NodeA EXECUTE 49.1 local – 1
...

DAGMan metrics

●Anonymous workflow
metrics (for Pegasus)

●Metrics file (JSON format)
generated at end of run
(dagfile.metrics)

●Reported by default (can be
disabled)

●Dagman.out tells whether
metrics were reported

DAGMan metrics example
{
 "client":"condor_dagman",
 "version":"8.1.6",
 ...
 "start_time":1396448008.138,
 "end_time":1396448047.596,
 "duration":39.458,
 "exitcode":0,
 ...
 "total_jobs":3,
 "total_jobs_run":3,
 "total_job_time":0.000,
 "dag_status":0
}

65

More information

› There’s much more detail, as well as
examples, in the DAGMan section of the
online HTCondor manual.

› DAGMan:
http://research.cs.wisc.edu/htcondor/
dagman/dagman.html

› For more questions:
htcondor-admin@cs.wisc.edu, htcondor-
users@cs.wisc.edu

mailto:htcondor-admin@cs.wisc.edu

Extra slides

DAGMAN_HOLD_CLAIM_TIME
› An optimization introduced in HTCondor

version 7.7.5 as a configuration option
› If a DAGMan job has child nodes, it will

instruct the HTCondor schedd to hold the
machine claim for the integer number of
seconds that is the value of this option,
which defaults to 20.

› Next job starts w/o negotiation cycle, using
existing claim on startd

67

67

Dot file

› Shows a snapshot of workflow state
› Updated atomically
› For input to the dot visualization tool
› In the DAG input file:
DOT DotFile [UPDATE] [DONT-OVERWRITE]

› To create an image
dot -Tps DotFile -o PostScriptFile

69

Dot file example

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

