Monitoring HTCondor with Ganglia
Ganglia Overview

› Scalable distributed monitoring for HPC clusters

› Two daemons
 - gmond – every host; collects and send metrics
 - gmetad – single host; persists metrics from local gmond in RRD

› Web Frontend
 - Presents graphs from persistent data
A 'cluster' is a collection of gmond instances which report to a common set of head nodes.

A 'node' is a single machine running gmond.

A 'grid' is all clusters known to a single gmetad.
Why Ganglia?

› Widely used monitoring system for cluster and grids
› Easy to add new metrics
› Can create custom graphs
Running condor_gangliad

- condor_gangliad runs on a single host
 - Gathers daemon ClassAds from the Collector
 - Publishes metrics to ganglia with host spoofing
- Can be on any host
- May be co-located with
 - condor_collector
 - gmetad
- Consider network traffic
Put Them Together

Central Manager
- negotiator
- collector

Submit Machine
- schedd

Execute Machine
- startd

A 'cluster' is a collection of gmond instances which report to a common set of head nodes.

A 'node' is a single machine running gmond.

A 'grid' is all clusters known to a single gmetad.

HTCondor
Possible Deployments

› Ganglia is already used for monitoring
 ▶ Start condor_gangliad on gmetad host
 • Least configuration
 ▶ Start condor_gangliad on Central Manager
 • Saves network traffic

› Ganglia is not in use for monitoring
 ▶ Setup dedicated host to run ganglia and condor_gangliad
 ▶ Generates graphs for web pages on demand
Ganglia Interface

- Uses gmetric method to add metrics to ganglia
 - Uses shared library on system to send updates
 - Fast and efficient
 - Falls back to using gmetric command
 - Much slower
- Uses gstat to determine which hosts are already monitored by ganglia
Configuration Macros

› GANGLIA_GSTAT_COMMAND
 ▷ Defaults to localhost (change master gmond running elsewhere)
 ▷ “gstat --all --mpifile --gmond_ip=localhost --gmond_port=8649”

› GANGLIA_SEND_DATA_FOR_ALL_HOSTS
 ▷ Set to true if want hosts not currently in ganglia

› GANGLIAD_VERBOSITY
 ▷ Defaults to 0, set higher for more monitoring
Running condor_gangliad

› Add to DAEMON_LIST
 ▶ DAEMON_LIST = ..., GANGLIAD

› Check GangliadLog for gmetric integration
 ▶ Look for libganglia load message
 • Library has been stable over many releases
 • May have to specify path to library
 ▶ If fall back to gmetric command look closely at timing
04/24/14 08:05:43 Testing gmetric
04/24/14 08:05:43 Loading libganglia /usr/lib64/libganglia-3.1.7.so.0.0.0
04/24/14 08:05:43 Will use libganglia to interact with ganglia.
04/24/14 08:06:03 Starting update...
04/24/14 08:06:03 Ganglia is monitoring 1 hosts
04/24/14 08:06:10 Got 7687 daemon ads
04/24/14 08:06:14 Ganglia metrics sent: 1858
04/24/14 08:06:14 Heartbeats sent: 80
Limit Data

- GANGLIAD_PER_EXECUTE_NODE_METRICS
 - Set to false if large pool
- Use Requirement express to limit data fetched
Metrics to Track

- Described in /etc/condor/ganglia.d/
- Default set provided
- Expressed as ClassAds
 - Name: Unique metric name used by ganglia
 - Value: ClassAd expression, defaults to “Name”
[Name = "JobsSubmitted";
 Desc = "Number of jobs submitted";
 Units = "jobs";
 TargetType = "Scheduler";
]

Minimal Example
Simple Example

```
[
    Name    = strcat(MyType,"DaemonCoreDutyCycle");
    Value   = RecentDaemonCoreDutyCycle;
    Desc    = "Recent fraction of busy time in the daemon event loop";
    Scale   = 100;
    Units   = "%";
    TargetType = "Scheduler,Negotiator,Machine_slot1";
]
```
Aggregate Metrics

› Can aggregate metrics over entire pool
 ▪ Sums: running jobs over pool
 ▪ Min and Max: Space Available
 ▪ Average

› Aggregates appear in “HTCondor Pool” group on central manager
Aggregate Example

[
 Name = "TotalJobAds";
 Desc = "Number of jobs currently in this schedd's queue";
 Units = "jobs";
 TargetType = "Scheduler";
]

[
 Aggregate = "SUM";
 Name = "Jobs in Pool";
 Value = TotalJobAds;
 Desc = "Number of jobs currently in schedds reporting to this pool";
 Units = "jobs";
 TargetType = "Scheduler";
]
Scaling Example

[
 Name = strcat(MyType,"MonitorSelfResidentSetSize");
 Value = MonitorSelfResidentSetSize;
 Verbosity = 1;
 Desc = "RAM allocated to this daemon";
 Units = "bytes";
 Scale = 1024;
 Type = "float";
 TargetType = "Scheduler,Negotiator,Machine_slot1";
]

Other Attributes

- Title = “Graph Title” (defaults to Name)
- Regex = for dynamic metric (users)
- Type = automatic based on type
 - Coerce integers to floats if scaling or large
- Group = “Group on Web Page”
Future Work

› Composite graphs
 ‹ For example, I/O load and throughput
 ‹ Better able to draw conclusions
› Graph slot states
› Determine which metrics are most useful
Live Demo

› http://timt.chtc.wisc.edu/ganglia
› http://cm.batlab.org/ganglia