Monitoring HTCondor with the BigPanDA monitoring package

J. Schovancová1, P. Love2, T. Miller3,
T. Tannenbaum3, T. Wenaus1

1 Brookhaven National Laboratory
2 Lancaster University
3 UW-Madison, Department of Computer Science

HTCondor Week 2014
28 – 30 April 2014, University of Wisconsin, Madison, WI, USA
Introduction

- PanDA = Production and Distributed Analysis

PanDA System Overview

T. Maeno, PanDA's Role in ATLAS Computing Model Evolution, ISGC2014
Evolution: The Next Generation

➢ US DOE ASCR and HEP funded project: *Next Generation Workload Management and Analysis System for Big Data*, code name: **BigPanDA**

- 3 year project since September 2012 to evolve PanDA Workload Management System beyond ATLAS and LHC
 - Factorize core
 - Leverage intelligent networking
 - Extend scope
 - **Monitoring** and usability
BigPanDA Monitoring

- BigPanDAmon package based on **django** framework
- Modular, easy to bring up a new project/VO
- Clear separation between data access and visualization
 - Provide REST APIs to access object information
- Runs on top of Oracle or MySQL DB backends
- Documentation for developers: describes configuration and modules
- Deployed with RPMs
HTCondor Monitoring

- HTCondor is an essential foundation technology for PanDA
 - the engine for PanDA's resource provisioning system (pilot factory)
- Integrating HTCondor monitoring into PanDA's successful monitoring system can provide value for both
- HTCondor monitoring has been implemented as a first application of BigPanDAmon's modular architecture
BigPanDA Monitoring Modules

BigPanDA monitoring site

BigPanDAmon-core
- Modules
 - PanDA job
 - Resource
 - HTCondor job
- UI elements
 - REST API
 - Table
 - Plot

Experiment/Project - specific
- Modules
 - e.g. a Model which inherits from core PanDA job
- Common
 - Settings
 - Static
 - Templates
 - Media
Monitoring Traffic

- Condor sched lib plugin to send updates to PanDA mon
 - Asynchronous w.r.t. scheduler
 - More technical details in Todd Tannenbaum's talk

- Connection to PanDA API with frequency 1 Hz
 - Bulk Update, Add, Flag deleted
 - Avg. 2-5 records/s, Peak: 100s records/s
 - Currently HTTPS (X509) authentication

- Updated information available in the monitoring
PanDA – HTCondor REST API

• Bulk-operation API resource

<table>
<thead>
<tr>
<th>Resource</th>
<th>HTTP verb</th>
<th>Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/v2/api-auth/htcondor/jobs/</td>
<td>POST</td>
<td>create</td>
<td>Bulk create new HTCondor job.</td>
</tr>
<tr>
<td></td>
<td>GET</td>
<td>read</td>
<td>Bulk list HTCondor jobs.</td>
</tr>
<tr>
<td></td>
<td>PUT</td>
<td>update</td>
<td>Bulk update HTCondor jobs.</td>
</tr>
<tr>
<td></td>
<td>DELETE</td>
<td>delete</td>
<td>Bulk flag of records which were deleted from the HTCondor.</td>
</tr>
</tbody>
</table>

• Single job API resource is not needed for now.
 • Perhaps we will need a single-job GET later on.

Nice and useful reading: http://apigee.com/about/api-best-practices/api-design/ebook
HTCondor Mon – list jobs

<table>
<thead>
<tr>
<th>Details</th>
<th>Owner</th>
<th>WMS ID</th>
<th>Global Job ID</th>
<th>Submitted</th>
<th>Run time</th>
<th>Status</th>
<th>Guessed status</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>apf</td>
<td>1792</td>
<td>aipanda002#177326.0#1385140808</td>
<td>2013-11-22T12:20:08Z</td>
<td></td>
<td>R</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1792</td>
<td>aipanda002#160997.29#1383646907</td>
<td>2013-11-05T05:21:47Z</td>
<td></td>
<td>R</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1792</td>
<td>aipanda002#177377.17#1385143058</td>
<td>2013-11-22T12:57:38Z</td>
<td></td>
<td>I</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#17315.9#1385140494</td>
<td>2013-11-22T12:14:54Z</td>
<td></td>
<td>I</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#177321.2#1385140682</td>
<td>2013-11-22T12:18:02Z</td>
<td></td>
<td>I</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#177354.2#1385142023</td>
<td>2013-11-22T12:40:23Z</td>
<td></td>
<td>I</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#177402.0#1385143926</td>
<td>2013-11-22T13:12:06Z</td>
<td></td>
<td>R</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#160999.25#1383647010</td>
<td>2013-11-05T05:23:30Z</td>
<td></td>
<td>R</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#17315.14#1385140494</td>
<td>2013-11-22T12:14:54Z</td>
<td></td>
<td>I</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>apf</td>
<td>1793</td>
<td>aipanda002#177348.27#1385141833</td>
<td>2013-11-22T12:37:13Z</td>
<td></td>
<td>I</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Filter table!

- Filter by all visible columns
- Bookmark filtered view, send to a collaborator
HTCondor Mon – job details

<table>
<thead>
<tr>
<th>Owner</th>
<th>WMS ID</th>
<th>Global Job ID</th>
<th>Submitter</th>
<th>Priority</th>
<th>Run time</th>
<th>CPU time</th>
<th>Manager</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>apf</td>
<td>1792</td>
<td>aipanda002#177326.0#1385140808</td>
<td>2013-11-22T12:20:08Z</td>
<td>R</td>
<td>null</td>
<td>0</td>
<td>manager</td>
<td>/etc/apf/runpilot3-wrapper-oct02.sh</td>
</tr>
<tr>
<td>apf</td>
<td>1792</td>
<td>aipanda002#160997.29#1383646907</td>
<td>2013-11-05T05:21:47Z</td>
<td>R</td>
<td>null</td>
<td>0</td>
<td>manager</td>
<td>/etc/apf/runpilot3-wrapper-oct02.sh</td>
</tr>
</tbody>
</table>

Job Details

- **Owner**: apf
- **WMS ID**: 1792
- **Global Job ID**: aipanda002#177326.0#1385140808
- **Submitted**: 2013-11-05T05:21:47Z
- **Priority**: 0
- **Run time**: null
- **CPU time**: 0
- **Manager**: manager
- **Command**: /etc/apf/runpilot3-wrapper-oct02.sh

Job Execution

- **p_start_time**: null
- **p_end_time**: null
- **p_modif_time**: null
- **p_schedd**: aipanda002
- **p_stdout**: http://aipanda002.cern.ch:25880/2013-11-05/CERN-P1_OpenStack/160997.29.out
- **p_stderr**: http://aipanda002.cern.ch:25880/2013-11-05/CERN-P1_OpenStack/160997.29.err
- **goodput**: -1
- **cpu_util**: -1
- **mbps**: null
- **read**: null
- **write**: null
- **seek**: null
- **xput**: null
- **bufsize**: 524288
- **blocksize**: 32768
Monitoring Wish list

- HTTPS → HTTP with IP/host restriction of agents
- Schema
 - PanDA mon side: use classads attributes (schema-less)
 - Condor side: minimize data translation
- RPCs
 - Provide list of compulsory/available attributes in API
- Scalability
 - Leverage experience with Redis
 - Webserver performance tuning (Apache2/WSGI, nginx/gunicorn)
- Summaries
 - Provide parameterized summaries/plots beside job lists
Summary

➢ Fruitful collaboration between PanDA and HTCondor teams!
➢ First version of the HTCondor monitor developed
 ✔ API v1 used on a production machine at UW cluster
➢ More updates yet to come.
Monitoring HTCondor with the BigPanDA monitoring package

J. Schovancová¹, P. Love², T. Miller³, T. Tannenbaum³, T. Wenaus¹
¹ Brookhaven National Laboratory
² Lancaster University
³ UW-Madison, Department of Computer Science

HTCondor Week 2014
28 – 30 April 2014, University of Wisconsin, Madison, WI, USA