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What do we do 

• Assess Middleware: Make cloud/grid 

software more secure 

• Train:  We teach tutorials for users, 

developers, sys admins, and managers 

• Research: Make in-depth assessments 

more automated and improve quality of 

automated code analysis  

 

 http://www.cs.wisc.edu/mist/papers/VAshort.pdf 
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Our experience 
   

  Condor, University of Wisconsin 
 Batch queuing workload management system 
 15 vulnerabilities                          600 KLOC of C and C++ 

  SRB, SDSC 
 Storage Resource Broker - data grid 
 5 vulnerabilities                          280 KLOC of C 

  MyProxy, NCSA 
 Credential Management System 
 5 vulnerabilities                          25 KLOC of C 

  glExec, Nikhef 
 Identity mapping service 
 5 vulnerabilities                          48 KLOC of C 

  Gratia Condor Probe, FNAL and Open Science Grid 
 Feeds Condor Usage into Gratia Accounting System 
 3 vulnerabilities                          1.7 KLOC of Perl and Bash 

  Condor Quill, University of Wisconsin 
 DBMS Storage of Condor Operational and Historical Data 
 6 vulnerabilities                          7.9 KLOC of C and C++ 
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  Wireshark, wireshark.org 
 Network Protocol Analyzer  

 2 vulnerabilities           2400 KLOC of C 

  Condor Privilege Separation, Univ. of Wisconsin 
 Restricted Identity Switching Module 

 2 vulnerabilities                        21 KLOC of C and C++ 

  VOMS Admin, INFN 
 Web management interface to VOMS data   

 4 vulnerabilities                        35 KLOC of Java and PHP 

  CrossBroker, Universitat Autònoma de Barcelona 
 Resource Mgr for Parallel & Interactive Applications 

 4 vulnerabilities                         97 KLOC of C++ 

  ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH  
 gLite Authorization Service   

 0 vulnerabilities          42 KLOC of Java and C  

 

Our experience 
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Our experience 

 

  VOMS Core  INFN 
     Virtual Organization Management System 

     1 vulnerability  161 KLOC of  Bourne Shell,  C++ and C 

  iRODS, DICE 
      Data-management System 

      9 vulnerabilities (and counting) 285 KLOC of C and C++ 

  Google Chrome, Google 
 Web browser 

     1 vulnerability    2396 KLOC of C and C++ 

   
 WMS, INFN 
 Workload Management System 
 in progress                728 KLOC of Bourne Shell,  C++, 
                        C, Python, Java, and Perl
  

 



Learn to Think Like an Attacker 
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An Exploit through the Eyes of an Attacker 

Exploit: 
– A manipulation of a program’s internal state in a way 

not anticipated (or desired) by the programmer. 
 

Start at the user’s entry point to the program: the 
attack surface: 

– Network input buffer 

– Field in a form 

– Line in an input file 

– Environment variable 

– Program option 

– Entry in a database 

– …  

Attack surface: the set of points in the program’s 
interface that can be controlled by the user. 
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The Path of an Attack 

p = requesttable; 

while (p != (struct table *)0) 

{ 

   if (p->entrytype == PEER_MEET) 

   { 

      found = (!(strcmp (her, p->me)) && 

               !(strcmp (me, p->her))); 

                } 

      else if (p->entrytype == PUTSERVER) 

      { 

         found = !(strcmp (her, p->me)); 

      } 

      if (found) 

         return (p); 

      else 

         p = p->next; 

   } 

   return ((struct table *) 0); 



An Exploit through the Eyes of an Attacker 

Follow the data and control flow through the 
program, observing what state you can control: 

– Control flow: what branching and calling paths are 
affected by the data originating at the attack surface? 

– Data flow: what variables have all or part of their value 
determined by data originating at the attack surface? 

 

Sometimes it’s a combination: 
 

if (inputbuffer[1] == 'a') 
     val = 3; 
else 

  val = 25; 

val is dependent on inputbuffer[1] even though it’s 
not directly assigned. 
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The Path of an Attack 

p = requesttable; 

while (p != (struct table *)0) 

{ 

   if (p->entrytype == PEER_MEET) 

   { 

      found = (!(strcmp (her, p->me)) && 

               !(strcmp (me, p->her))); 

                } 

      else if (p->entrytype == PUTSERVER) 

      { 

         found = !(strcmp (her, p->me)); 

      } 

      if (found) 

         return (p); 

      else 

         p = p->next; 

   } 

   return ((struct table *) 0); 



An Exploit through the Eyes of an Attacker 

 

The goal is to end up at points in the program 
where the attacker can override the intended 
purpose. These points are the impact surface: 

– Unconstrained execution (e.g., exec’ing a shell) 

– Privilege escalation 

– Inappropriate access to a resource 

– Acting as an imposter 

– Forwarding an attack 

– Revealing confidential information 

– …  
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The Path of an Attack 

p = requesttable; 

while (p != (struct table *)0) 

{ 

   if (p->entrytype == PEER_MEET) 

   { 

      found = (!(strcmp (buf, p->me)) && 

               !(strcmp (me, p->her))); 

                } 

      else if (p->entrytype == PUTSERVER) 

      { 

         found = !(strcmp (buf, p->me)); 

      } 

      if (found) 

         return (p); 

      else 

         p = p->next; 

   } 

   return ((struct table *) 0); 



 

buffer[100] 

 

<ret addr> 

The Classic: A Stack Smash 
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int foo() 

{ 

 char buffer[100]; 

 int i, j; 

 … 

 

 gets(buffer); 

 

 … 

 return(strlen(buffer)); 

} 

j 

i 

 

 

    

 <evil addr> <evil addr>128a348fe3212a003a2d 

 jmp <evil addr> 



An Exploit through the Eyes of an Attacker 

The stack smashing example is a simple and 
obvious one: 

– The input directly modified the target internal state... 

... no dependence on complex control or data flows. 

– The attacker owned all the target bits, so had complete 
control over the destination address. 

– No randomization 

– No internal consistency checks 

– No modern OS memory protection 

– No timing issues or races 
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Evaluation: Finding Bits to Own 

So, how do you find vulnerabilities in the face of these 
complexities? 

– Complex flows: 
• Taint analysis: execute program in special simulation that 

tracks data from input buffers through execution, marking all 
the data and control-flow decisions affected by the data. 

• Fuzz testing: using unstructured or partially structured 
random input to try to crash the program. 

Reliability is the foundation of security. 

– Randomness: 
• Repeated attempts: Sometimes patience is all that you need. 

• Grooming: A sequence of operations that bring the program to 
a known state, e.g.: 

– Cause a library to be loaded at a known address. 

– Cause the heap to start allocating at a know address. 

– Heap sprays: repeated patterns of code/data written to the heap so that at 
least one copy is in a useful place. 
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Prevention: Randomness 

Create a moving target: 
– Address space randomization (ASR): change the address of 

the code that contains the jump target from run to run. 

In a classic stack smashing attack, the code was in the 
stack frame. 

Also randomize addresses of code, heap, control blocks 
(e.g., Process Environment Block (PEB) on Windows), and 
mapped files. 

– Stack layout randomization: several ways … 

• Address of the start of the stack 

• Random padding between frames 

• Order of local variables and parameter layout 
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Prevention: Randomness 
In practice, Linux: 

• Support Address Space Layout Randomization (ALSR) 
since 2.6.12 (2005): 
– Stack: 19 bits of randomness on 16 byte boundaries. 

– Heap: 8 bits of randomness on page (often 4K) boundaries. 

– Code: Enabled by position independent executables (PIEs). 
 

• Check the status of ALSR: 

cat /proc/sys/kernel/randomize_va_space  
 

One of the following values should be displayed: 

– 0: Disabled. 

– 1: (Conservative) Shared libraries and PIE binaries are 

randomized. 

– 2: (Full) Conservative settings plus randomize the start of 

brk area. 
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Prevention: Randomness 
In practice: 

• Windows: 

– Available since Vista. Major improvements in Windows 7 
and 8, especially for 64-bit executables. 

You sacrifice a lot of security with 32-bit executables. 

– Heap: Addition of heap guard pages, randomization of 
allocation order. 

– Code: Enabled by linking with /DYNAMICBASE 

• Better randomness for code appearing above 4GB in address 
space. 
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Prevention: Address Space Controls 

Prevent code executing in data space: 
– PAE (physical address extensions) on Intel (XD) or AMD 

(NX): prevent execution from certain pages, such as stack.  

Called data execution prevention (DEP) on Windows. 
 

– Can do the same for heap variables, but would prevent JIT-
based software, such as a Java virtual machine or binary 
profiler (e.g., Valgrind or Intel PIN) 
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Prevention: Consistency Checks 

Stack canaries 
– On function entry, when building stack frame, place a 

value on the stack, between the data and control 
information (typical, return address) 

– The value is usual a random number that varies from 
run to run, even call to call. 

– On function exit, check to see if canary value is still 
present. 
 

– Turning on stack checking: 

• gcc: compile with -fstack-protector-all 

• Visual Studio: compile with /GS (on by default) 
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canary 

 

buffer[100] 

 

<ret addr> 
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int foo() 

{ 

 char buffer[100]; 

 int i, j; 

 <push canary on stack> 

  … 

 gets(buffer); 

  … 

 <check canary value> 

 return(strlen(buffer)); 

} 

 

 

    

 

j 

i 

<evil addr> 

<evil addr>128a348fe3212a003a2d 

Prevention: Consistency Checks 

overwritten 



Prevention: Consistency Checks 

Heap consistency checks 
– Store extra information about the size and layout of 

allocated and free memory regions in the heap. 

– On each heap operation, e.g., malloc or free, and 
periodically other times, scan the heap for sensible 
structure. 

– Can use tools like Valgrind, IBM Rational Purify, or Insure++ 
to check programs in a more detailed way for memory 
errors at runtime. 
 

– Turning on heap checking: 

• gcc: compile with –lmcheck or call mcheck (or call 
mprobe for individual checks) 

• Windows: set heap check by running gflags.exe before 
running your program, or call _heapchk from within the 
program. 
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Would you like a tutorial taught at your site? 
 

Tutorials for users, developers, 

administrators and managers:  
– Security Risks 

– Secure Programming 

– Vulnerability Assessment 
 

Contact us! 

Barton P. Miller 
 

bart@cs.wisc.edu 

Elisa Heymann 
 

Elisa.Heymann@uab.es 
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Questions? 
 
 
 
 

http://www.cs.wisc.edu/mist 


