
Lockdown of a Basic Pool

Basic Concepts

› You have an HTCondor pool

Personal HTCondor (1 node)

1000 node cluster

› Who can use your pool?

Basic Concepts

› “Who can use it” is really two concepts:

› The “Who” is authentication

› The “can” is authorization

Basic Concepts

› Authentication is finding out WHO some

entity is.

› How is this done?

Common methods:

• Present a secret that only you should know

• Perform some action that only you can do

• Present a credential that only you could have

Basic Concepts

› Authorization is deciding what someone is

allowed to do.

› You must know who they are before you

can decide this!

Basic Concepts

› I’m using “they” pretty loosely here.

› “They” could be:

A user

A machine

An agent/daemon/service

Basic Concepts

› In the context of a HTCondor pool:

You want only machines that you know to be in

the pool

You want only people you know to submit jobs

Authentication

› When users submit jobs, HTCondor

authenticates them:

FS on Unix

NTSSPI on Windows

› The HTCondor SCHEDD daemon now

“owns” the jobs, and acts on their behalf.

Authentication

› So how can we trust the SCHEDD?

› Daemon-to-daemon authentication

Authentication

› A HTCondor daemon must prove to other

HTCondor daemons that it is authentic.

› Quick and Easy: Pool Password

Pool Password

› All daemons know a “password”

› This password (hash) is stored:

In a permissions-protected file on UNIX

In the encrypted part of the registry on

Windows

Pool Password

› To set it:

% condor_store_cred -c add

Account: condor_pool@cs.wisc.edu

Enter password:

Operation succeeded.

Pool Password

› This is typically done locally on each

machine that will use the password

› On UNIX, you can copy the file containing

the hash to each machine

COPY IT SECURELY!

CHECK THE PERMISSIONS!

Pool Password

› Configure HTCondor to use it

› Set your condor_config:

 SEC_DAEMON_AUTHENTICATION = REQUIRED

 SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD

Pool Password

› So, are we “All Good”?

› What about flocking to other pools?

› HTCondor-C?

Pool Password

› Password must be the same for everyone –

are you prepared to give it to another

administrator?

› What if they also flock with other pools, are

you prepared for them to give it to their

flocking friends?

› And so on?

Flexibility

› It would be nice if each pool could have its

own credential

› Well, you can! Use the SSL authentication

method.

Why use SSL?

› Widely used and deployed

› Flexible enough for securing

communications between HTCondor

daemons and also for authenticating users

Basics: OpenSSL

› OpenSSL is typically already installed on

modern Linux systems

› On more obscure flavors of Unix, and on

Windows, you will likely need to install it

yourself

› Can be obtained here:

 http://www.openssl.org/

Basics: OpenSSL

› Or, instead of installing OpenSSL

everywhere, you can create your

credentials on a Linux machine and

securely move them to another machine

where they will be used

› Make sure the permissions are such that

only the proper people can read the key!

Basics: SSL config

› You can use the default from the openssl package or start

with my simplified version here:

› http://www.cs.wisc.edu/~zmiller/cw2013/openssl.cnf

› Find the section [req_distinguished_name] and

customize it:

[req_distinguished_name]

stateOrProvinceName_default = Wisconsin

localityName_default = Madison

0.organizationName_default = University of Wisconsin -- Madison

1.organizationName_default = Computer Sciences Department

organizationalUnitName_default = HTCondor Project

http://www.cs.wisc.edu/~zmiller/cw2011/openssl.cnf

Single Credential

› In this example, we will create a single

key/certificate pair and use that to secure

communications between HTCondor

daemons

› This is roughly equivalent to the pool

password method – it is a shared secret

stored in a file

Single Credentials

› First, create the private key file:

 openssl genrsa -out cndrsrvc.key 1024

 Generating RSA private key, 1024 bit long modulus

++++++

 ...++++++

 e is 65537 (0x10001)

 chmod 600 cndrsrvc.key

Single Credential

› Now, create a self-signed certificate
openssl req -new -x509 -days 3650 -key cndrsrvc.key \

 -out cndrsrvc.crt -config openssl.cnf
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:

Organization Name (eg, company) [University of Wisconsin -- Madison]:

Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [HTCondor Project]:

Common Name (eg, YOUR name) []:Service

Email Address []:

Single Credential

› Inspect the certificate we made:
openssl x509 -noout -text -in cndrsrvc.crt

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 8c:94:7b:b1:f9:6a:bd:72

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=Wisconsin, L=Madison, O=University of Wisconsin -- \

 Madison, O=Computer Sciences Department, OU=HTCondor Project, CN=Service

 Validity

 Not Before: May 1 14:31:09 2013 GMT

 Not After : Apr 28 14:31:09 2023 GMT

 Subject: C=US, ST=Wisconsin, L=Madison, O=University of Wisconsin -- \

 Madison, O=Computer Sciences Department, OU=HTCondor Project, CN=Service

…

Single Credential

› Great! Now what?

› Create a map file

HTCondor needs to know how to map the

distinguished name to an actual username.

For example:
 /C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin -- Madison/O=Computer

Sciences Department/OU=HTCondor Project/CN=Service

 Should map to:
 condor

› Configure the HTCondor daemons

HTCondor Mapfile

› Simple format

› Three fields (on one line)
 Authentication method (SSL in this case)

 Source DN

 Mapped user

SSL

 "/C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin --

Madison/O=Computer Sciences Department/OU=HTCondor Project/CN=Service“

 condor

condor_config

› Add the following entries:
AUTH_SSL_CLIENT_CAFILE = /path/to/cndrsrvc.crt

AUTH_SSL_CLIENT_CERTFILE = /path/to/cndrsrvc.crt

AUTH_SSL_CLIENT_KEYFILE = /path/to/cndrsrvc.key

AUTH_SSL_SERVER_CAFILE = /path/to/cndrsrvc.crt

AUTH_SSL_SERVER_CERTFILE = /path/to/cndrsrvc.crt

AUTH_SSL_SERVER_KEYFILE = /path/to/cndrsrvc.key

› And the map file:
CERTIFICATE_MAPFILE = /path/to/condor_mapfile

condor_config

› Tell HTCondor to use SSL:
SEC_DAEMON_AUTHENTICATION = REQUIRED

SEC_DAEMON_AUTHENTICATION_METHODS = SSL

That’s (mostly) It!

› You have now enabled SSL authentication

between all your HTCondor daemons

› But at this point, it isn’t much different than

using a Pool Password

Creating a CA

› The solution is to issue separate

credentials for each entity that will be

involved in authenticating

› Can’t do this with Pool Password, but you

can with SSL

Creating a CA

› This involves creating a Certificate

Authority which is trusted by HTCondor

› All certificates issued by the CA are then

trusted

› Certs can be easily issued for hosts and

users

Creating a CA

› Create the root key and cert which will be

used to sign all other certificates

› This key should be protected with a

password (don’t forget it!!)

Creating a CA

› Generate a key:

openssl genrsa -des3 -out root-ca.key 1024

Generating RSA private key, 1024 bit long modulus

...................++++++

...........................++++++

e is 65537 (0x10001)

Enter pass phrase for root-ca.key:

Verifying - Enter pass phrase for root-ca.key:

Creating a CA

› Now create a self signed certificate
openssl req -new -x509 -days 3650 -key root-ca.key -out root-ca.crt -config openssl.cnf

Enter pass phrase for root-ca.key: CA PASSWORD HERE

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:

Organization Name (eg, company) [University of Wisconsin -- Madison]:

Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [HTCondor Project]:

Common Name (eg, YOUR name) []:ROOT CA

Email Address []:

Creating a CA

› Again, you can inspect the certificate

openssl x509 -noout -text -in root-ca.crt

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 c7:99:e5:f7:c6:54:00:7a

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=Wisconsin, L=Madison, O=University of Wisconsin –

 Madison, O=Computer Sciences Department, OU=HTCondor Project, CN=ROOT CA

…

Creating a CA

› In the directory with the Root CA and

openssl.cnf file, run these commands:

touch ca.db.index

echo 01 > ca.db.serial

Creating a Host Credential

› Create the key and a signing request

openssl req -newkey rsa:1024 -keyout \

 host_omega.key -nodes -config \

 openssl.cnf -out host_omega.req

Creating a Host Certificate

Generating a 1024 bit RSA private key

..++++++

..........++++++

writing new private key to 'host_omega.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:

Organization Name (eg, company) [University of Wisconsin -- Madison]:

Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [HTCondor Project]:

Common Name (eg, YOUR name) []:omega.cs.wisc.edu

Email Address []:

Creating a Host Credential

openssl ca -config openssl.cnf -out \

 host_omega.crt -infiles host_omega.req

Using configuration from openssl.cnf

Enter pass phrase for ./root-ca.key:

Check that the request matches the signature

Signature ok

Certificate Details:

…

Certificate is to be certified until May 01 14:31:09 2014

GMT (365 days)

Sign the certificate? [y/n]:y

Configuring HTCondor

› Each host can now use it’s own credential

(example for omega.cs.wisc.edu)

AUTH_SSL_CLIENT_CAFILE = /path/to/root-ca.crt

AUTH_SSL_CLIENT_CERTFILE = /path/to/host_omega.crt

AUTH_SSL_CLIENT_KEYFILE = /path/to/host_omega.key

AUTH_SSL_SERVER_CAFILE = /path/to/root-ca.crt

AUTH_SSL_SERVER_CERTFILE = /path/to/host_omega.crt

AUTH_SSL_SERVER_KEYFILE = /path/to/host_omega.key

Creating a User Credential

openssl req -newkey rsa:1024 -keyout zmiller.key -config openssl.cnf -out zmiller.req

Generating a 1024 bit RSA private key

.....................++++++

..++++++

writing new private key to 'zmiller.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase: USER PASSWORD HERE

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:

Organization Name (eg, company) [University of Wisconsin -- Madison]:

Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [HTCondor Project]:

Common Name (eg, YOUR name) []:Zach Miller

Email Address []:zmiller@cs.wisc.edu

Creating a User Credential

openssl ca -config openssl.cnf -out zmiller.crt -infiles zmiller.req

Using configuration from openssl.cnf

Enter pass phrase for ./root-ca.key: CA PASSWORD

Check that the request matches the signature

Signature ok

Certificate Details:

…

Certificate is to be certified until May 1 14:31:09 2014 GMT (365

days)

Sign the certificate? [y/n]:y

Mapping Users

› You could have one entry per user:
SSL

 “C=US/ST=Wisconsin/L=Madison, O=University of Wisconsin –

Madison/O=Computer Sciences Department/OU=HTCondor Project/CN=Zach

Miller/emailAddress=zmiller@cs.wisc.edu”

 zmiller

SSL

 “C=US/ST=Wisconsin/L=Madison, O=University of Wisconsin –

Madison/O=Computer Sciences Department/OU=HTCondor Project/CN=Todd

Tannenbaum/emailAddress=tannenba@cs.wisc.edu”

 tannenba

…

Etc.

Mapping Users

› In the CERTIFICATE_MAPFILE, you can

now add a rule to map all users by

extracting the username from their email

address:

SSL emailAddress=(.*)@cs.wisc.edu \1

Securing Everything

› If all hosts and users have credentials, you

can then enable SSL authentication for ALL

communication, not just daemon-to-

daemon. In the condor_config:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

More Information

› Ask me during this week!

› You can find more detailed information, and

examples using multi-level CAs here:

 http://pages.cs.wisc.edu/~zmiller/ca-howto/

