
Best Practices for HTC and

Scientific Applications

chtc.cs.wisc.edu

1) Understand your job

2) Take it with you

3) Cache your data

4) Remote I/O

5) Be checkpointable

Overview

chtc.cs.wisc.edu

Understand your job

› Is it ready for HTC?

Runs without interaction

› Requirements are well-understood?

Input required

Execution time

Output generated

chtc.cs.wisc.edu

Understand your job

› ALL requirements understood?

Licenses

Network bandwidth

Software dependencies

› Based on the requirements, we’ll use one

or more of the following strategies to get

the job running smoothly

chtc.cs.wisc.edu

Take it with you

› Your job can run in more places, and

therefore potentially access more

resources, if it has fewer dependencies.

Don’t rely on obscure packages being installed

If you require a specific version of something

(perl, python, etc.) consider making it part of

your job

chtc.cs.wisc.edu

Take it with you

› Know what your set of input files is

Remote execution node may not share the same

filesystems, and you’ll want to bring all the input

with you.

› You can maybe specify the entire list of files

to transfer or a directory (HTCondor)

› If the number of files is very large, but the

size is small, consider creating a tarball

containing the needed run-time environment

chtc.cs.wisc.edu

Take it with you

› Wrapper scripts can help here

Untar input or otherwise prepare it

Locate and verify dependencies

Set environment variables

› We use a wrapper-script approach to

running Matlab and R jobs on CHTC

chtc.cs.wisc.edu

Take it with you

› Licensing

› Matlab requires a license to run the

interpreter or the compiler, but not the

results of the compilation

› Part of the submission process then is

compiling the Matlab job, which is done on

a dedicated, licensed machine, using

HTCondor and a custom tool:

chtc_mcc –mfiles=my_code.m

chtc.cs.wisc.edu

Take it with you

› Another way to manage licenses is using

HTCondor’s “concurrency limits”

The user places in the submit file:

concurrency_limits = sw_foo

The admin places in the condor_config:

SW_FOO_LIMIT = 10

chtc.cs.wisc.edu

Cache your data

› Let’s return for a moment to the compiled

Matlab job

› The job still requires the Matlab runtime

libraries

› As mentioned earlier, let’s not assume they

will be present everywhere

chtc.cs.wisc.edu

Cache your data

› This runtime is the same for every Matlab

job

› Running hundreds of these simultaneously

will cause the same runtime to be sent from

the submit node to each execute node

› CHTC solution: squid proxies

chtc.cs.wisc.edu

Cache your data

› The CHTC wrapper script fetches the

Matlab runtime using http

› Before doing so, it also sets the http_proxy

environment variable

› curl then automatically uses the local cache

› Can also be done with HTCondor’s file

transfer plugin mechanisms, which support

third party transfers (including http)

chtc.cs.wisc.edu

Cache your data

› The same approach would be taken for any

other application that has one or more

chunks of data that are “static” across jobs

R runtime

BLAST databases

chtc.cs.wisc.edu

Remote I/O

› What if I don’t know what data my program

will access?

› Transferring everything possible may be

too unwieldy and inefficient

› Consider Remote I/O

chtc.cs.wisc.edu

Remote I/O

› Files could be fetched on demand, again

using http or whatever mechanism

› When running in HTCondor, the

condor_chirp tool allows files to be fetched

from and stored to during the job

› Also consider an interposition agent, such

as parrot which allows trapping of I/O.

chtc.cs.wisc.edu

Remote I/O

› In HTCondor, add this to the submit file:

WantRemoteIO = True

› It is off by default

› Now the job can execute:

condor_chirp fetch /home/zmiller/foo bar

chtc.cs.wisc.edu

Remote I/O

› Galaxy assumes a shared filesystem for

both programs and data

› Most HTCondor pools do not have this

› Initially tried to explicitly transfer all

necessary files

This requires additional work to support each

application

chtc.cs.wisc.edu

Remote I/O

› New approach: Parrot

Intercepts job’s I/O calls and redirects them

back to the submitting machine

› New job wrapper for HTCondor/Parrot

Transfers parrot to execute machine and

invokes job under parrot

› Could also be extended to have parrot do

caching of large input data files

chtc.cs.wisc.edu

Checkpointing

› Policy on many clusters prevents jobs from

running longer than several hours, or

maybe up to a handful of days, before the

job is preempted

› What if your job will not finish and no

progress can be made?

› Make your job checkpointable

chtc.cs.wisc.edu

Checkpointing

› HTCondor supports “standard universe” in

which you recompile (relink, actually) your

executable

› Checkpoints are taken automatically when

run in this mode, and when the job is

rescheduled, even on a different machine, it

will continue from where it left off

chtc.cs.wisc.edu

Checkpointing

› condor_compile is the tool used to create

checkpointable jobs

› There are some limitations

No fork()

No open sockets

chtc.cs.wisc.edu

Checkpointing

› Condor is also working on integration with

DMTCP to do checkpointing

› Another option is user-space checkpointing.

If your job can catch a signal and write its

status to a file, it may be able to resume

from there

chtc.cs.wisc.edu

Conclusion

› Jobs have many different requirements and

patterns of use

› Using one or more of the ideas above

should help you get an application running

smoothly on a large scale

› Questions? Please come talk to me during

a break, or email zmiller@cs.wisc.edu

› Thanks!

mailto:zmiller@cs.wisc.edu

