Making HTCondor Energy Efficient by identifying miscreant jobs

Stephen McGough, Matthew Forshaw & Clive Gerrard
Newcastle University
Stuart Wheater
Arjuna Technologies Limited
Task lifecycle

1. HTC user submits task
2. Interactive user logs in
3. Task eviction
4. Resource selection
5. Computer reboot
6. Interactive user logs in
7. Task eviction
8. Resource selection
9. Task eviction
10. Interactive user logs in
11. Task eviction
12. Resource selection
13. Task eviction
14. Task completion

- Good: 'Miscreant' – has been evicted but don’t know if it’s good or bad
- Bad: (details not visible in the image)
Motivation

• We have run a high-throughput cluster for ~6 years
 – Allowing many researchers to perform more work quicker

• University has strong desire to reduce energy consumption and reduce CO$_2$ production
 – Currently powering down computer & buying low power PCs
 – “If a computer is not ‘working’ it should be powered down”

• Can we go further to reduce wasted energy?
 – Reduce time computers spend running work which does not complete
 – Prevent re-submission of ‘bad’ jobs
 – Reduce the number of resubmissions for ‘good’ jobs

• Aims
 – Investigate policy for reducing energy consumption
 – Determine the impact on high-throughput users
Can we fix the number of retries?

- ~57 years of computing time during 2010
- ~39 years of wasted time
 - ~27 years for ‘bad’ tasks: average 45 retries: max 1946 retries
 - ~12 years for ‘good’ tasks: average 1.38 retries: max 360 retries
- 100% ‘good’ task completion -> 360 retries
 - Still wastes ~13 years on ‘bad’ tasks
 - 95% ‘good’ task completion -> 3 retries: 9,808 good tasks killed (3.32%)
 - 99% ‘good’ task completion -> 6 retries: 2,022 good tasks killed (0.68%)
Can we make tasks short enough?

- Make tasks short enough to reduce miscreants
- Average idle interval – 371 minutes
- But to ensure availability of intervals
 - 95% : need to reduce time limit to 2 minutes
 - 99% : need to reduce time limit to 1 minute
- Impractical to make tasks this short
Cluster Simulation

• High Level Simulation of Condor
 – Trace logs from a twelve month period are used as input
 • User Logins / Logouts (computer used)
 • Condor Job Submission times (‘good’/’bad’ and duration)

<table>
<thead>
<tr>
<th>Type</th>
<th>Cores</th>
<th>Speed</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>~3Ghz</td>
<td>57W</td>
</tr>
<tr>
<td>High End</td>
<td>4</td>
<td>~3Ghz</td>
<td>114W</td>
</tr>
<tr>
<td>Legacy</td>
<td>2</td>
<td>~2Ghz</td>
<td>100-180W</td>
</tr>
</tbody>
</table>
Motivation

n reallocation policies

- **N1(n)**: Abandon task if deallocated n times.
- **N2(n)**: Abandon task if deallocated n times ignoring interactive users.
- **N3(n)**: Abandon task if deallocated n times ignoring planned machine reboots.
- **C1**: Tasks allocated to resources at random, favouring awake resources
- **C2**: Target less used computers (longer idle times)
- **C3**: Tasks are allocated to computers in clusters with least amount of time used by interactive users
Accrued Time Policies

- Impose a limit on cumulative execution time for a task.
- \(A_1(t) \): Abandon if accrued time > \(t \) and task deallocated.
- \(A_2(t) \): As \(A_1 \), discounting interactive users.
- \(A_3(t) \): As \(A_1 \), discounting reboots.
Individual Time Policy

- Impose a limit on individual execution time for a task.
 - Nightly reboots bound this to 24 hours.
 - What is the impact of lowering this?
- $I_1(t)$: Abandon if individual time > t.

![Graphs showing energy consumption and overheads over individual time](image)
D1(m,d): Miscreant tasks are permitted to continue executing on a dedicated set of m resources (without interactive users or reboots), with a maximum duration d.
Conclusion

• Simple policies can be used to reduce the effect of miscreant tasks in a multi-use cycle stealing cluster.
 – N2 (total evictions ignoring users)
• Order of magnitude reduction in energy consumption
 – Reduce amount of effort wasted on tasks that will never complete
• Policies may be combined to achieve further improvements.
 – Adding in dedicated computers
Questions?

stephen.mcgough@ncl.ac.uk
m.j.forshaw@ncl.ac.uk

More info:
McGough, A Stephen; Forshaw, Matthew; Gerrard, Clive; Wheater, Stuart;
Reducing the Number of Miscreant Tasks Executions in a Multi-use Cluster,
Cloud and Green Computing (CGC), 2012