
2 May 201
3

John Hover

1

Dynamic Cloud-based clusters with
HTCondor

John Hover

Grid Group, Brookhaven National Lab

HTCondor Week 2013

Madison, Wisconsin

2 May 201
3

John Hover

2

Outline
Context & Goals

Dependencies/Limitations

System Components

– Workflow coordination: Job Factory

– Virtual Machines: Creation and Deployment

– HTCondor pool: Scaling for the WAN

– Cloud platform(s): EC2/OpenStack

Results

Glitches, Issues, and Problems

Next Steps

2 May 201
3

John Hover

3

Context
ATLAS

– LHC Experiment at CERN

– In the US: BNL Tier 1, ~dozen Tier 2s, Tier 3s (local research groups)

Heavy users of OSG and HTCondor, but...

– No opportunistic use on OSG due to software constraints.

– Declining budget environment.

– Highly variable needs from Tier 3s/researchers

– Inefficient use of Tier 1 resources for simulation (low I/O)

Large-scale clusters have been done before. This work:

– Attempts to provide a complete workload solution. Wide-area pool
+ VM invocation.

– Allows repeatability via published docs/recipes.

How?

– $50K Amazon research grant. Thanks Michael!

2 May 201
3

John Hover

4

Goal(s)
Run large Condor pool on multiple cloud platforms and/or providers.

– Spread across large area, possibly multi-continental.

– Include facility OpenStack instance(s).

– Utilize spot pricing on EC2.

– Allow the size of the distributed pool to be adjusted dynamically.

– Run typical ATLAS production (simulation) workloads on it.

Why?

– Free up high-performance Tier 1 resources for user analysis by
moving low I/O work to EC2 and/or academic clouds.

– Pre-position ATLAS to utilize additional cloud-based resources
that might become available.

2 May 201
3

John Hover

5

Dependencies/Limitations

Inconsistent behavior, bugs, immature software:
– shutdown -h means destroy instance on EC2, but means shut off on

OpenStack (leaving the instance to count against quota).

– EC2 offers public IPs, Openstack nodes behind NAT

VO infrastructures often not designed to be fully dynamic:
– E.g., ATLAS workload system assumes static sites.

– Data management assumes persistent endpoints

– Others? Any element that isn't made to be created, managed, and
cleanly deleted programmatically.

EC2 imposes data export costs.

– Not appropriate for large-output work. (yet)

BNL imposes security and networking constraints.

2 May 201
3

John Hover

6

Elastic Cluster Components
AutoPyFactory (APF): Coordinates submissions

– One APF queue observes a Panda queue, submits pilots to
local Condor pool.

– Second APF queue
• Observes a local Condor pool, when jobs are Idle,

submits WN VMs to IaaS (up to a limit).
• Notices spot terminations, submits additional VMs.

Worker Node VMs

– Condor startds join back to local Condor cluster.

– VMs are identical, don't need public IPs, and don't need to
know about each other.

HTCondor pool

– Static Central Manager.

– Dynamic Execute hosts.

2 May 201
3

John Hover

7

AutoPyFactory (APF)

APF (v2) is the ATLAS pilot factory utility

– Multi-threaded OO Python daemon. 1 thread per “APF queue”

– Uses HTCondor-G for grid submission

– Has done all ATLAS pilot submission in the US for 1 year+

– Migration to APFv2 nearly complete in Europe.

– Developed at BNL

Used by ATLAS, but modular and generic:

– Plug-in architecture for WMS, Batch, and scheduling
functionality.

– No required ATLAS/Panda coupling or dependencies.

– Used within CloudScheduler at UVic.

2 May 201
3

John Hover

8

Virtual Machines
Worker Node VM creation and deployment using Boxgrinder:

– http://boxgrinder.org/

– http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/

Notable features:
– Modular appliance inheritance. The wn-atlas definition inherits from the

wn-osg and wn-batch profile, which in turn inherit from base.

– “Baked in” HTCondor startd connects back to static Central Manager.

– BG uploads built images directly to Openstack (v3+), EC2, libvirt, or
local directory via 'delivery plugins'.

Bad News! Boxgrinder being deprecated.
– Superceded by Aeolus/Oz/Imagefactory.

– Similar, but different model: XML, embedded resources, no inheritance.

– I prefer BG model, but don't have much choice.

2 May 201
3

John Hover

9

WN Image Deployment

Build and upload VM:
svn co http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder

<Add condor_password file to source tree.>

<Edit COLLECTOR_HOST to point to your collector>

boxgrinder-build -f boxgrinder/sl6-x86_64-wn-atlas.appl -p ec2 -d ami

boxgrinder-build -f boxgrinder/sl6-x86_64-wn-atlas.appl -p ec2 -d ami
--delivery-config region:us-west-2,bucket:racf-cloud-2

#~.boxgrinder/config
plugins:
 openstack:
 username: jhover
 password: XXXXXXXXX
 tenant: bnlcloud
 host: cldext03.usatlas.bnl.gov
 port: 9292

s3:
 access_key: AKIAJRDFC4GBBZY72XHA
 secret_access_key: XXXXXXXXXXX
 bucket: racf­cloud­1
 account_number: 4159­7441­3739
 region: us­east­1
 snapshot: false
 overwrite: true

http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder

2 May 201
3

John Hover

10

Condor Scaling: Naive attempt
Known requirements:

– Condor Connecton Broker (some startds are behind NAT)

– Password authentication (simplest secure setup on WAN)

– HTCondor 7.9.x

Naive Approach:

– Single Condor host (schedd, collector, etc.)

– Single process for each daemon

Result: Maxed out at ~3-4 thousand nodes.

– Collector load causing timeouts of schedd daemon.
• WAN latencies + strong auth?

– Network connections exceeding open file limits/open ports

– Collector duty cycle regularly >= .99.

2 May 201
3

John Hover

11

Collector & Schedd Tuning 1

OS-level Adjustments:

– Host-based firewall open on relevant ports

– Institutional firewall open on relevant ports

– Sufficient open files/ user process limits/ max connections:

#/etc/security/limits.conf
* ­ nofile 1000000
* ­ nproc unlimited
* ­ memlock unlimited
* ­ locks unlimited
* ­ core unlimited

#/etc/sysctl.conf
fs.file­max = 1000000

2 May 201
3

John Hover

12

Collector & Schedd Tuning 2
Split (Collector, Negotiator, CCB) host from Schedd host

– Protects schedd from Collector and network-related load

Multiple condor_collector processes

– 20 collector processes reporting to single top-level collector.

– (glideinWMS uses as many as ~200+.)

– Execute hosts randomly choose one at boot-time.

Enable the shared port daemon everywhere possible

– Reduces number of separate TCP connections between
execute, schedd, and collector hosts.

Enable session auth.

– Minimize security re-negotiation, which is very costly in high-
latency scenarios.

2 May 201
3

John Hover

13

/etc/condor/config.d/50cloudcollector.config
Available at http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/
/condor/50cloudcollector.config

Multiple collector processes
COLLECTOR_HOST=$(CONDOR_HOST):29650
USE_SHARED_PORT = TRUE
COLLECTOR.USE_SHARED_PORT = FALSE
DAEMON_LIST = COLLECTOR, MASTER, NEGOTIATOR, SCHEDD, SHARED_PORT
COLLECTOR1 = $(COLLECTOR)
COLLECTOR2 = $(COLLECTOR)
COLLECTOR1_ARGS = ­f ­p 29660
COLLECTOR2_ARGS = ­f ­p 29661
DAEMON_LIST = $(DAEMON_LIST) COLLECTOR1 COLLECTOR2

Enable session auth.
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION = True

Don't preempt *ever*
PREEMPT = FALSE
KILL = FALSE
PREEMPTION_REQUIREMENTS = False
RANK = 0
NEGOTIATOR_CONSIDER_PREEMPTION = False
CLAIM_WORKLIFE = 3600

http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/

2 May 201
3

John Hover

14

Execute Host Tweaks

Choose random Collector port to connect to.

– Implemented via /etc/init.d/condorconfig script.

Similar tweaks to Central Manager:

– Enable SHARED_PORT

– Enable CCB

– Enable session auth.

Collect and export cloud info from metadata server:

– instance-id, public-hostname,public-ipv4

Allow the central management of startd state:

– This will be used for retirement, shutdown.

– E.g. via condor_off -peaceful

2 May 201
3

John Hover

15

/etc/condor/config.d/50cloudcondor.config
Available at http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/

DAEMON_LIST = MASTER, STARTD, SHARED_PORT
CCB_ADDRESS = $(COLLECTOR_HOST)
UID_DOMAIN = localhost.localdomain

Security
ALLOW_WRITE = condor_pool@*
SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = PASSWORD, FS
SEC_PASSWORD_FILE = /etc/condor/password_file
SEC_DEFAULT_ENCRYPTION = REQUIRED
SEC_DEFAULT_INTEGRITY = REQUIRED
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION = True

Allow remote admin
ALLOW_WRITE = $(ALLOW_WRITE), submit­side@matchsession/*
ALLOW_ADMINISTRATOR = condor_pool@*/*

USER_JOB_WRAPPER = /usr/libexec/jobwrapper.sh
DEDICATED_EXECUTE_ACCOUNT_REGEXP = slot[1­8]+

http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/

2 May 201
3

John Hover

16

2 May 201
3

John Hover

17

EC2 and HTCondor
On-demand vs. Spot

– On-Demand: You pay standard price. Never terminates.

– Spot: You declare maximum price. You pay current,variable spot
price. When spot price exceeds your maximum, instance is
terminated without warning.

– But partial hours are not charged.

– HTCondor handles spot by making one-time spot request, then
cancelling it when fulfilled.

Problems:

– Memory provided in units of 1.7GB (less than ATLAS req).

– More (or less) memory than needed per “virtual core”

– On our private Openstack, we created a 1-core, 2GB RAM
instance type.

2 May 201
3

John Hover

18

EC2 Spot Considerations

Users utilizing spot pricing need to consider:

– Shorter jobs. Simplest approach. ATLAS originally worked to
ensure jobs were at least a couple hours, to avoid pilot flow
congestion. Now we have the opposite need.

– Checkpointing. Some work in Condor world providing the ability
to checkpoint without linking to special libraries.

– Per-work-unit stageout (e.g. event server in HEP).

With sub 1-hour units of work, users could get significant free time!

2 May 201
3

John Hover

19

EC2 Types

Type Memory VCores “CUs” CU/Core $Spot/hr
Baseline

$On-
Demand/hr

Slots?

m1.small 1.7G 1 1 1 .007 .06 -

m1.medium 3.75G 1 2 2 .013 .12 1

m1.large 7.5G 2 4 2 .026 .24 3

m1.xlarge 15G 4 8 2 .052 .48 7

Questions:

– We currently bid 3 * <baseline>. Is this optimal?
• Seems to result in ~1/3 churn per day.

– Spot is ~1/10th the cost of on-demand. Nodes are ~1/2 as
powerful as our dedicated hardware. Based on estimates of
Tier 1 costs, this is competitive. But need exact numbers.

– Do 7 slots on m1.xlarge perform economically?

2 May 201
3

John Hover

20

Results

HTCondor Scaling Results

– Smooth operation, even with bursts of new execute hosts.

– DaemonCoreDutyCycle ~.35. Lots more headroom.

Overall Project Results

– Ran ~5000 EC2 (1-slot) nodes for ~3 weeks.

– 3 EC2 zones (Virginia, California, Oregon)

– Added in ~250 Openstack slots to virtual pool as well.

– Spent approximately $13K. Only $750 was for data transfer.

– Poor EC2 efficiency poor due to long jobs. Otherwise reliable
operation.

– Actual spot price paid very close to baseline, e.g. still less than .
$.01/hr for m1.small.

2 May 201
3

John Hover

21

Results 2

““Replicate-able”Replicate-able”

– Entire setup was duplicated on 2 other hosts in ~3 hours.

– Now running ~4000 slots on Google Compute Engine

– GCE does not permit image upload (yet), so execute
adjustments added manually and snapshotted.

PublicPublic

– All recipes are in our Boxgrinder SVN repo. No “secret
sauce”.

– APF is generic and modular enough to be used as a
general-purpose conditional job factory.

2 May 201
3

John Hover

22

Glitches, Issues, Problems

Don't want to preempt, ever!

– Rather tricky to express. Took several iterations.

Allowing admin access to pool from particular user account.

– Required somewhat hack-ish:

 #~/.bash_profile#~/.bash_profile

 export _condor_SEC_PASSWORD_FILE=/var/home/apf/etc/password_fileexport _condor_SEC_PASSWORD_FILE=/var/home/apf/etc/password_file

Documentation

– In general, lack of high-level design documentation combined
with detailed recipes (like this use case).

– Now being addressed as a result of this activity.

2 May 201
3

John Hover

23

Glitches, Issues, Problems 2

Multi-collector setup is awkward

– Requires verbose, complex CM config

– Requires execute host coupling (i.e. port range to choose from).

– Team is considering simpler config, e.g.
NUM_COLLECTORS=20

and auto-discovery of real collector port from CM by startd.

Shared port daemon should be the default?

– No harm. Great benefit.

2 May 201
3

John Hover

24

Next Steps

Last piece of the Puzzle: Contraction

– Currently we ramp up and/or maintain (KeepNRunning)
automatically with APF.

– APF needs to ramp down by retiring unneeded WNs.
• Done by correlating condor_q and condor_status

information, joining on instance ID.

Noticing terminations as they occur

– Will allow HTCondor to accurately track startd state. (Todd Miller)

– Currently testing Todd M's detection daemon on our WNs.

Drive ATLAS to create short-job workloads approriate for Spot.

Run another large-scale test. Precisely test CU/slot efficiency.

2 May 201
3

John Hover

25

Conclusions

HTCondor: Configurable, flexbile, complete, scale-able.

– HTCondor is configurable enough to be scalable to very high
levels, even over WAN.

– HTCondor is flexible enough to be programmatically
integrated/controlled by an outside system (e.g. APF in this
case).

– HTCondor is complete enough to serve as both local pool
infrastructure and as cloud client framework (Condor-G).

Our work was done with a pilot system. But could work the same with real
jobs submitted to local pool.

2 May 201
3

John Hover

26

Acknowledgements

Jose Caballero: APF development

Xin Zhao: BNL Openstack deployment

Will Strecker-Kellogg: Local Condor pointers

Todd Miller, Todd Tennenbaum, Jaime Frey, Miron Livny: Condor scaling
assistance

David Pellerin, Stephen Elliott, Thomson Nguy, Jaime Kinney, Dhanvi
Kapila: Amazon EC2 Spot Team

2 May 201
3

John Hover

27

Questions?

2 May 201
3

John Hover

28

Extra Slides

2 May 201
3

John Hover

29

Boxgrinder Base Appliance

name: sl5­x86_64­base
os:
 name: sl
 version: 5
hardware:
 partitions:
 "/":
 size: 5
packages:
 ­ bind­utils
 ­ curl
 ­ ntp
 ­ openssh­clients
 ­ openssh­server
 ­ subversion
 ­ telnet
 ­ vim­enhanced
 ­ wget
 ­ yum

repos:
 ­ name: "sl58­x86_64­os"
 baseurl: “http://host/path/repo”

files:
 "/root/.ssh":
 ­ "authorized_keys"
 "/etc":
 ­ "ntp/step­tickers"
 ­ "ssh/sshd_config"

post:
 base:
 ­ "chown ­R root:root /root/.ssh"
 ­ "chmod ­R go­rwx /root/.ssh"
 ­ "chmod +x /etc/rc.local"
 ­ "/sbin/chkconfig sshd on"
 ­ "/sbin/chkconfig ntpd on"

2 May 201
3

John Hover

30

Boxgrinder Child Appliance

name: sl5­x86_64­batch
appliances:
 ­ sl5­x86_64­base
packages:
 ­ condor
repos:
 ­ name: "htcondor­stable"
 baseurl:
"http://research.cs.wisc.edu/htcondor/yum/stable/rhel5"

files:
 "/etc":
 ­ "condor/config.d/50cloud_condor.config"
 ­ “condor/password_file”
 ­ "init.d/condorconfig"

post:
 base:
 ­ "/usr/sbin/useradd slot1"
 ­ "/sbin/chkconfig condor on"
 ­ "/sbin/chkconfig condorconfig on"

2 May 201
3

John Hover

31

Boxgrinder Child Appliance 2
name: sl5­x86_64­wn­osg
summary: OSG worker node client.
appliances:
 ­ sl5­x86_64­base
packages:
 ­ osg­ca­certs
 ­ osg­wn­client
 ­ yum­priorities
repos:
 ­ name: "osg­release­x86_64"
 baseurl: "http://dev.racf.bnl.gov/yum/snapshots/rhel5/osg­release­
2012­07­10/x86_64"
 ­ name: "osg­epel­deps"
 baseurl: "http://dev.racf.bnl.gov/yum/grid/osg­epel­
deps/rhel/5Client/x86_64"

files:
 "/etc":
 ­ "profile.d/osg.sh"
post:
 base:
 ­ "/sbin/chkconfig fetch­crl­boot on"
 ­ "/sbin/chkconfig fetch­crl­cron on"

2 May 201
3

John Hover

32

2 May 201
3

John Hover

33

#/etc/apf/queues.conf
[BNL_CLOUD]
wmsstatusplugin = Panda
wmsqueue = BNL_CLOUD
batchstatusplugin = Condor
batchsubmitplugin = CondorLocal
schedplugin = Activated

sched.activated.max_pilots_per_cycle = 80
sched.activated.max_pilots_pending = 100
batchsubmit.condorlocal.proxy = atlas­production
batchsubmit.condorlocal.executable = /usr/libexec/wrapper.sh

[BNL_CLOUD­ec2­spot]
wmsstatusplugin = CondorLocal
wmsqueue = BNL_CLOUD
batchstatusplugin = CondorEC2
batchsubmitplugin = CondorEC2
schedplugin = Ready,MaxPerCycle,MaxToRun
sched.maxpercycle.maximum = 100
sched.maxtorun.maximum = 5000

batchsubmit.condorec2.gridresource = https://ec2.amazonaws.com/
batchsubmit.condorec2.ami_id = ami­7a21bd13
batchsubmit.condorec2.instance_type = m1.xlarge
batchsubmit.condorec2.spot_price = 0.156
batchsubmit.condorec2.access_key_id = /home/apf/ec2­racf­cloud/access.key
batchsubmit.condorec2.secret_access_key = /home/apf/ec2­racf­
cloud/secret.key

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

