LARK
Bringing Distributed High Throughput Computing to the Network

Todd Tannenbaum
tannenba@cs.wisc.edu
U of Wisconsin-Madison

Garhan Attebury
attebury@cse.unl.edu
U of Nebraska-Lincoln
What is Lark?

• NSF-funded project to take first steps at bridging DHTC and the network layer
• Collaboration between UNL and UW-Madison

Some Lark Goals...

• Develop software for network interaction by leveraging recent advances in SDN and the Linux Kernel
• Integrate these advances into HTCondor
One example application...

- At UW-Madison, we want network traffic to pass thru border firewalls.
- *But*... thousands of HTCondor jobs running on large campus compute clusters can overwhelm firewalls.
- Policy: Would like network traffic for trusted compute jobs that need to move a lot of data to bypass firewalls
Demonstration

• Goal: Demonstrate HTCondor programming a unique network path per job

• How:
 1. HTCondor creates a per-job network device
 2. Locks the user’s application to this device
 3. Communicates with Cisco ONE controller to define a path based on metadata associated with the job
Todd bravely (foolishly?) gambles with Murphy’s Law by performing a brief live demonstration
Starter creates network pipes

Worker Node

System Network Namespace

- condor_starter
- Network Pipe Device
- Network Pipe Device
- Physical Network Device
 192.168.0.1

External Network
Starter creates a helper process
Helper configures IPTables and assigns addresses

Worker Node

System Network Namespace

condor_starter → Helper script

Network Pipe Device
10.0.0.1

Network Pipe Device

IPTables-based
Nat/Routing,
Accounting

Physical Network Device
192.168.0.1

External Network
Starter forks new process with new network namespace

Worker Node

System Network Namespace

condor_starter

Network Pipe Device
10.0.0.1

Network Pipe Device

Job-Private Network Namespace

condor_starter

IPTables-based Nat/Routing, Accounting

Physical Network Device
192.168.0.1

External Network
Parent starter passes one end of network pipe to network namespace,
Child starter configures routing and IP address

Worker Node

System Network Namespace
condor_start

Network Pipe
Device
10.0.0.1

IPTables-based
NAT/Routing,
Accounting

Physical Network
Device
192.168.0.1

Job-Private Network Namespace

Network Pipe
Device
10.0.0.1

condor_start

External Network
Final Configuration

Worker Node

System Network Namespace

condor_starter

Network Pipe Device
10.0.0.1

IPTables-based NAT/Routing, Accounting

Physical Network Device
192.168.0.1

Job-Private Network Namespace

Network Pipe Device
10.0.0.1

Network Calls

User Process

External Network
Besides SDN integration, what are the other Lark goals and activities?

- Networking accounting
- Network policies
- DYNES integration
- perfSONAR integration
- IPv6 and network testbed
Network accounting

• Traditionally CPU hours are primary metric for academic clusters
• Networking not always free (EC2, non I2)
• More data, bigger data
• Interface per job allows detailed and accurate network network accounting
Network policies

• A few options...
 – My job requires no inbound connectivity (NAT)
 – My job needs full connectivity / public IP (Bridge)
 – My job requires port X for ObscureLicenseServer™
 – My job is part of a special workflow (VLANs)

• Security policies
DYNES integration

“Bridging DHTC and the network layer”

- DYNES (Dynamic Network System) allocates, schedules, and prioritizes channels to provide bandwidth reservation to data flows
- API interface allows scheduler to reserve ‘dedicated’ path for workflows
perfSONAR integration

• perfSONAR publishes what it measures

• Collect statistical information (bandwidth, availability, etc…) into ClassAds

• Example: Using information from perfSONAR, Condor can determine expected bandwidth to a remote site and limit a workflow to match
IPv6 and Network Testbed

• Condor has (some) IPv6 support already, needs thorough testing
• Testbeds at both UW and UNL
Project status

• Per job namespaces:
 – IPv4 (NAT + bridging)
 – OpenFlow rules

• perfSONAR:
 – pS metrics in ClassAds

• DYNES:
 – work in progress

• IPv6:
 – basics work in condor, still some work
Lark Enabled Execution Host

OpenFlow Switch

Campus Border Firewall

Cisco ONE Controller

Internet

Normal Traffic

Trusted Traffic

start insert rules based on job metadata

Lark Enables Rotation on job metadata