

Dissecting Memory Problems – A
Semantic Approach

Alfredo Gimenez

Motivation
Historical trends in memory performance and
energy efficiency show that memory access is

becoming one of the most significant bottlenecks
to increasing performance and energy efficiency

Motivation - Performance

Single core performance and memory performance gains relative to 1980*

Memory is becoming a more frequent and larger bottleneck

*Hennessy and Patterson, Computer Architecture, a Quantitative Approach, 5th ed.

Motivation – Energy Efficiency

As cache size and associativity increases, power consumption also increases*

Cache-efficiency → Energy efficiency

*Hennessy and Patterson, Computer Architecture, a Quantitative Approach, 5th ed.

Mitigating the Memory Access Bottleneck
The software solution: write code which makes

use of the fastest and most efficient cache

Figuring out how to optimize code for cache
efficiency is not trivial, and often not portable

We need a way to collect and interpret memory
performance data to help make software cache

optimization easier

Gathering Memory Performance Data

●Up until recently, could only gather process-wide
data

–e.g. # of cache misses over time

●Recent hardware additions allow us to sample
load events precisely

–Sampling based on events/instructions

–Intel PEBS, AMD IBS

Gathering Memory Performance Data

●Load Event Samples contain:
–The raw address operand of the load instruction

–How many cycles the load took

–Where in the memory hierarchy the address was
resolved (e.g. L1 cache, RAM)

●Still, we need a way to effectively interpret
these samples

Interpreting Memory Data

●“Data-centric”:
accumulate the
samples in terms of
data symbols, i.e.
variables [Liu]
●Store allocated
buffer addresses in
a data structure,
correlate samples
post-mortem

Xu Liu and John Mellor-Crummey, "Pinpointing Data Locality Problems Using Data-Centric
Analysis" 2011 International Symposium on Code Generation and Optimization (CGO11) April 2-
6, Chamonix, France.

Interpreting Hardware Data

●Hardware Domain
→ Natural Domain
[PAVE]
●Per-process flops
overlaid onto the
natural domain
●Hardware counter
data interpreted in
terms of the problem
being solved

Hydrodynamics simulation results

FLOP/s per MPI process, mapped onto the
natural domain – the physical space of the
problem

Bringing Higher-Level Semantics to
Memory Performance Data

●We'd like to answer questions like:
–Where, within this buffer, are RAM hits occurring?

–How does memory performance correlate with the
physical space of a simulation? (edge cases?)

–What part of the algorithm (not the code) results in
most inefficient memory accesses?

–At what exact point are we exhausting L1 cache?
L2?

Semantic Memory

●To answer these, we need to know:
–Which buffers are relevant and what do they
represent?

–How are they accessed?

–How do they map to the Natural Domain of an
application?

●We store this information in a

Semantic Memory Tree

Semantic Memory

●Semantic Memory Range
–Label, e.g. “mesh elements”

–Size of a single element, e.g. sizeof(double)

–Length of vector, e.g. 3 elements/vector

–Address of first element

–Address of last element

Semantic Memory

●Semantic Memory Tree
–A tree of Semantic Memory Ranges (SMRs)

–Self-balancing (AVL) lookup tree

–Semantically-organized visualization tree

Natural Domain

Semantic Memory

●Natural Domain Mapping
–A programmer-defined function to map indices from
a buffer to a location in the Natural Domain

Data Buffers

Buffer 1

Buffer 2

Instrumentation Overview

Instrumentation Syntax
Creating SMRs

Instrumentation Syntax

Group ranges by semantics, i.e. “input” and
“output”

Instrumentation Syntax
Mapping to the Natural Domain via a custom function

Visualizing the data!
1) Visualize the Semantic Memory Tree

2) Visualize the data overlaid onto the Natural
Domain

A Canonical Case-Study:
Matrix Multiplication

●Naive matrix
multiplication exhausts
cache limits, causes
poor memory access
performance
●Blocked matrix
multiplication allows
elements to be reused,
blocks can fit in cache

Semantic Memory Tree View
Example: % of Samples Resolved in L2 Cache

Semantic Memory Tree View

Natural Domain Overlay
X, Y are matrix indices
Color is total cost (in cycles) of samples

Badly aligned allocation

Cache limits exceeded

Natural Domain Overlay
64x64

256x256 512x512

128x128

A Real-World Example:
LULESH

●Livermore Unstructured
Lagrangian Explicit
Shock Hydrodynamics
●Unstructured mesh
means a more complex
NDM function (have to
calculate indirection)

Semantic Memory Tree View

Avg Cost

Semantic Memory Tree View

Optimization:
using more
temporary
variables

Persistent
variables less of
a factor

Avg Cost

Semantic Memory Tree View

Unoptimized Optimized

Natural Domain Overlay

Natural Domain Overlay

???

Conclusions

●Semantic Memory Tree Visualizations provide
–Some higher-level semantics to the data-centric view

–A general outline to find problems

–Relative bottlenecks (X is accessed slower than Y)

●Natural Domain Overlay Visualizations provide
–Fine-grained information about where problems are
happening

–Possibly difficult to interpret, best in conjunction with
SMT visualization

Next Steps

●Better way to see many variables
–L1 %, average cost, total cost, etc

–Absolute data analysis (currently relative information)

●Correlate data with other metrics
–Hardware information

–Access patterns (time-stamping samples)

●Automatic problem detection
–Process the output to pinpoint problems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

