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Motivation
Historical trends in memory performance and 
energy efficiency show that memory access is 

becoming one of the most significant bottlenecks 
to increasing performance and energy efficiency



  

Motivation - Performance

Single core performance and memory performance gains relative to 1980*

Memory is becoming a more frequent and larger bottleneck

*Hennessy and Patterson, Computer Architecture, a Quantitative Approach, 5th ed.  



  

Motivation – Energy Efficiency

As cache size and associativity increases, power consumption also increases*

Cache-efficiency → Energy efficiency

*Hennessy and Patterson, Computer Architecture, a Quantitative Approach, 5th ed. 
 



  

Mitigating the Memory Access Bottleneck
The software solution: write code which makes  

use of the fastest and most efficient cache

Figuring out how to optimize code for cache 
efficiency is not trivial, and often not portable

We need a way to collect and interpret memory 
performance data to help make software cache 

optimization easier



  

Gathering Memory Performance Data

●Up until recently, could only gather process-wide 
data

–e.g. # of cache misses over time

●Recent hardware additions allow us to sample 
load events precisely

–Sampling based on events/instructions

–Intel PEBS, AMD IBS 



  

Gathering Memory Performance Data

●Load Event Samples contain:
–The raw address operand of the load instruction

–How many cycles the load took

–Where in the memory hierarchy the address was 
resolved (e.g. L1 cache, RAM)

●Still, we need a way to effectively interpret 
these samples



  

Interpreting Memory Data

●“Data-centric”: 
accumulate the 
samples in terms of 
data symbols, i.e. 
variables [Liu] 
●Store allocated 
buffer addresses in 
a data structure, 
correlate samples 
post-mortem

Xu Liu and John Mellor-Crummey, "Pinpointing Data Locality Problems Using Data-Centric 
Analysis"  2011 International Symposium on Code Generation and Optimization (CGO11) April 2-
6, Chamonix, France.



  

Interpreting Hardware Data

●Hardware Domain 
→ Natural Domain 
[PAVE]
●Per-process flops 
overlaid onto the 
natural domain
●Hardware counter 
data interpreted in 
terms of the problem 
being solved

Hydrodynamics simulation results

FLOP/s per MPI process, mapped onto the 
natural domain – the physical space of the 
problem



  

Bringing Higher-Level Semantics to 
Memory Performance Data

●We'd like to answer questions like:
–Where, within this buffer, are RAM hits occurring?

–How does memory performance correlate with the 
physical space of a simulation? (edge cases?)

–What part of the algorithm (not the code) results in 
most inefficient memory accesses?

–At what exact point are we exhausting L1 cache? 
L2?



  

Semantic Memory

●To answer these, we need to know:
–Which buffers are relevant and what do they 
represent?

–How are they accessed?

–How do they map to the Natural Domain of an 
application?

●We store this information in a 

Semantic Memory Tree



  

Semantic Memory

●Semantic Memory Range
–Label, e.g. “mesh elements”

–Size of a single element, e.g. sizeof(double)

–Length of vector, e.g. 3 elements/vector

–Address of first element

–Address of last element



  

Semantic Memory

●Semantic Memory Tree
–A tree of Semantic Memory Ranges (SMRs)

–Self-balancing (AVL) lookup tree

–Semantically-organized visualization tree



  

Natural Domain

Semantic Memory

●Natural Domain Mapping
–A programmer-defined function to map indices from 
a  buffer to a location in the Natural Domain

Data Buffers

Buffer 1

Buffer 2



  

Instrumentation Overview



  

Instrumentation Syntax
Creating SMRs



  

Instrumentation Syntax

Group ranges by semantics, i.e. “input” and 
“output”



  

Instrumentation Syntax
Mapping to the Natural Domain via a custom function



  

Visualizing the data!
1) Visualize the Semantic Memory Tree

2) Visualize the data overlaid onto the Natural 
Domain



  

A Canonical Case-Study: 
Matrix Multiplication

●Naive matrix 
multiplication exhausts 
cache limits, causes 
poor memory access 
performance
●Blocked matrix 
multiplication allows 
elements to be reused, 
blocks can fit in cache



  

Semantic Memory Tree View
Example: % of Samples Resolved in L2 Cache



  

Semantic Memory Tree View



  

Natural Domain Overlay
X, Y are matrix indices
Color is total cost (in cycles) of samples

Badly aligned allocation

Cache limits exceeded



  

Natural Domain Overlay
64x64

256x256 512x512

128x128



  

A Real-World Example:
LULESH

●Livermore Unstructured 
Lagrangian Explicit 
Shock Hydrodynamics
●Unstructured mesh 
means a more complex 
NDM function (have to 
calculate indirection)



  

Semantic Memory Tree View

Avg Cost



  

Semantic Memory Tree View

Optimization: 
using more 
temporary 
variables

Persistent 
variables less of 
a factor

Avg Cost



  

Semantic Memory Tree View

Unoptimized Optimized



  

Natural Domain Overlay



  

Natural Domain Overlay

???



  

Conclusions

●Semantic Memory Tree Visualizations provide
–Some higher-level semantics to the data-centric view

–A general outline to find problems

–Relative bottlenecks (X is accessed slower than Y)

●Natural Domain Overlay Visualizations provide
–Fine-grained information about where problems are 
happening

–Possibly difficult to interpret, best in conjunction with 
SMT visualization



  

Next Steps

●Better way to see many variables
–L1 %, average cost, total cost, etc

–Absolute data analysis (currently relative information)

●Correlate data with other metrics
–Hardware information

–Access patterns (time-stamping samples)

●Automatic problem detection
–Process the output to pinpoint problems
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