

Condor Project

Computer Sciences Department
University of Wisconsin-Madison

Condor and Workflows:
An Introduction

Condor Week 2012

Nathan Panike, channeling Kent Wenger

www.cs.wisc.edu/Condor 2

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 3

My jobs have
dependencies…

Can Condor help solve my
dependency problems?

Yes!

Workflows are the

answer

www.cs.wisc.edu/Condor 4

What are workflows?

>  General: a sequence of connected
steps

> Our case
h Steps are Condor jobs
h Sequence defined at higher level
h Controlled by a Workflow Management

System (WMS), not just a script

www.cs.wisc.edu/Condor 5

Workflow example
Set up
input

Collate
output

Process Process Process Process Process

www.cs.wisc.edu/Condor 6

Workflows – launch and forget
›  A workflow can take days, weeks or even months
›  Automates tasks user could perform manually…

h But WMS takes care of automatically
›  Enforces inter-job dependencies
›  Includes features such as retries in the case of

failures – avoids the need for user intervention
›  The workflow itself can include error checking
›  The result: one user action can utilize many

resources while maintaining complex job inter-
dependencies and data flows

www.cs.wisc.edu/Condor 7

Workflow tools

>  DAGMan: Condor’s workflow tool
>  Pegasus: a layer on top of DAGMan

that is grid-aware and data-aware
> Makeflow: not covered in this talk
> Others…
>  This talk will focus mainly on DAGMan

www.cs.wisc.edu/Condor 8

LIGO inspiral search
application

>  Describe…

Inspiral workflow application is the work of Duncan Brown, Caltech,

Scott Koranda, UW Milwaukee, and the LSC Inspiral group

www.cs.wisc.edu/Condor 9

How big?

> We have users running 500k-job
workflows in production

>  Depends on resources on submit
machine (memory, max. open files)

>  “Tricks” can decrease resource
requirements

www.cs.wisc.edu/Condor 10

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 11

Albert learns DAGMan

> Directed Acyclic Graph Manager

>  DAGMan allows Albert to specify the
dependencies between his Condor jobs, so
DAGMan manages the jobs automatically

>  Dependency example: do not run job B
until job A has completed successfully

www.cs.wisc.edu/Condor 12

DAG definitions

>  DAGs have one or more
nodes (or vertices)

>  Dependencies are
represented by arcs (or
edges). These are arrows
that go from parent to
child)

>  No cycles!

A

B C

D

X

www.cs.wisc.edu/Condor 13

Condor and DAGs

>  Each node
represents a Condor
job (or cluster)

>  Dependencies
define the possible
order of job
execution

Job
A

Job
B

Job
C

Job
D

www.cs.wisc.edu/Condor 14

Defining a DAG to Condor

A DAG input file defines a DAG:

file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D

www.cs.wisc.edu/Condor 15

Submit description files
For node B:
file name:
b.submit
universe = vanilla
executable = B
input = B.in
output = B.out
error = B.err
log = B.log
queue

For node C:
file name:
c.submit
universe = standard
executable = C
input = C.in
output = C.out
error = C.err
log = C.log
queue

www.cs.wisc.edu/Condor 16

Jobs/clusters

>  Submit description files used in a
DAG can create multiple jobs,
but they must all be in a single cluster

>  The failure of any job means the
entire cluster fails. Other jobs are
removed.

> No macros in “log” submit entries
(for now)

www.cs.wisc.edu/Condor 17

Node success or failure
>  A node either succeeds

or fails
>  Based on the return

value of the job(s)
0 a success
not 0 a failure

>  This example: C fails
>  Failed nodes block

execution; DAG fails

A

B C

D

www.cs.wisc.edu/Condor 18

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 19

Submitting the DAG to
Condor

>  To submit the entire DAG, run

condor_submit_dag DagFile

>  condor_submit_dag creates a submit

description file for DAGMan, and DAGMan
itself is submitted as a Condor job (in the
scheduler universe)

>  -f(orce) option forces overwriting of
existing files

www.cs.wisc.edu/Condor

Vocabulary
>  Rescue DAGs save the state of a partially-

completed DAG, and are created when a
node fails or the condor_dagman job is
removed with condor_rm

>  PRE And POST scripts are code associated
with a job that run on the submit host.

>  Nested DAGs are jobs that are themselves
DAGs.

20

www.cs.wisc.edu/Condor

Controlling running DAGs

>  condor_rm
h Removes all queued node jobs, kills PRE/POST

scripts (removes entire workflow)
h Kills PRE/POST scripts
h Removes entire workflow
h Creates rescue DAG

21

www.cs.wisc.edu/Condor

Controlling running DAGs
(cont)

> condor_hold and condor_release
•  Node jobs continue when DAG is held
•  No new node jobs submitted
•  DAGMan “catches up” when released

22

www.cs.wisc.edu/Condor

Controlling running DAGS:
the halt file

•  New in Condor version 7.7.5.
•  Create a file named DAGfile.halt in

the same directory as your DAG file.
•  Jobs that are running will continue to

run.
•  No new jobs will be submitted and no

PRE scripts will be run.

23

www.cs.wisc.edu/Condor

The halt file (cont)

• When all submitted jobs complete,
DAGman creates a rescue dag and

• When jobs finish, POST scripts will
be run.

• When all submitted jobs complete,
DAGman creates a rescue dag and
exits.

24

www.cs.wisc.edu/Condor

The halt file (cont)

•  If the halt file is removed, DAGman
returns to normal operation.

25

www.cs.wisc.edu/Condor 26

condor_q -dag

>  The -dag option associates DAG node
jobs with the parent DAGMan job.

> New in 7.7.5: Shows nested DAGs
properly.

>  Shows current workflow state

www.cs.wisc.edu/Condor 27

condor_q –dag example

-- Submitter: nwp@llunet.cs.wisc.edu : <128.105.14.28:51264> : llunet.cs.wisc.edu ID
OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD

 392.0 nwp 4/25 13:27 0+00:00:50 R 0 1.7 condor_dagman -f –

 393.0 |-1 4/25 13:27 0+00:00:23 R 0 0.0 1281.sh 393
 395.0 |-0 4/25 13:27 0+00:00:30 R 0 1.7 condor_dagman -f –
 399.0 |-A 4/25 13:28 0+00:00:03 R 0 0.0 1281.sh 399
4 jobs; 0 completed, 0 removed, 0 idle, 4 running, 0 held, 0 suspended

www.cs.wisc.edu/Condor 28

dagman.out file
›  DagFile.dagman.out
>  Verbosity controlled by the
DAGMAN_VERBOSITY configuration macro
(new in 7.5.6) and –debug on the
condor_submit_dag command line

>  Directory specified by
-outfile_dir directory

>  Mostly for debugging
>  Logs detailed workflow history

www.cs.wisc.edu/Condor 29

dagman.out contents
...
04/17/11 13:11:26 Submitting Condor Node A job(s)...
04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '='

'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a
+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.
04/17/11 13:11:27 assigned Condor ID (180224.0.0)
04/17/11 13:11:27 Just submitted 1 job this cycle...
04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)
04/17/11 13:11:27 Number of idle job procs: 1
04/17/11 13:11:27 Of 4 nodes total:
04/17/11 13:11:27 Done Pre Queued Post Ready Un-Ready Failed

04/17/11 13:11:27 === === === === === === ===
04/17/11 13:11:27 0 0 1 0 0 3 0
04/17/11 13:11:27 0 job proc(s) currently held

...

This is a small excerpt of the dagman.out file.

www.cs.wisc.edu/Condor 30

Node status file

>  In the DAG input file:
NODE_STATUS_FILE statusFileName
[minimumUpdateTime]

>  Not enabled by default
>  Shows a snapshot of workflow state

h  Overwritten as the workflow runs

www.cs.wisc.edu/Condor 31

Node status file contents
BEGIN 1302885255 (Fri Apr 15 11:34:15 2011)
Status of nodes of DAG(s): job_dagman_node_status.dag

JOB A STATUS_DONE ()
JOB B1 STATUS_SUBMITTED (not_idle)
JOB B2 STATUS_SUBMITTED (idle)
...
DAG status: STATUS_SUBMITTED ()
Next scheduled update: 1302885258 (Fri Apr 15 11:34:18

2011)
END 1302885255 (Fri Apr 15 11:34:15 2011)

www.cs.wisc.edu/Condor 32

jobstate.log file
>  In the DAG input file:
JOBSTATE_LOG JobstateLogFileName

>  Not enabled by default
>  Meant to be machine-readable (for

Pegasus)
>  Shows workflow history
>  Basically a subset of the dagman.out file

www.cs.wisc.edu/Condor 33

jobstate.log contents
1302884424 INTERNAL *** DAGMAN_STARTED 48.0 ***
1302884436 NodeA PRE_SCRIPT_STARTED - local - 1
1302884436 NodeA PRE_SCRIPT_SUCCESS - local - 1
1302884438 NodeA SUBMIT 49.0 local - 1
1302884438 NodeA SUBMIT 49.1 local - 1
1302884438 NodeA EXECUTE 49.0 local - 1
1302884438 NodeA EXECUTE 49.1 local – 1
...

www.cs.wisc.edu/Condor 34

Dot file

>  In the DAG input file:
DOT DotFile [UPDATE] [DONT-OVERWRITE]

>  To create an image
dot -Tps DotFile -o
PostScriptFile

>  Shows a snapshot of workflow state

www.cs.wisc.edu/Condor 35

Dot file example

www.cs.wisc.edu/Condor 36

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 37

DAGMan configuration
› A few dozen DAGMan-specific

configuration macros (see the manual…)
›  From lowest to highest precedence

h Condor configuration files
h User’s environment variables:

•  _CONDOR_macroname
h DAG-specific configuration file

(preferable)
h condor_submit_dag command line

www.cs.wisc.edu/Condor 38

Per-DAG configuration
>  In DAG input file:
CONFIG ConfigFileName
or
condor_submit_dag –config
ConfigFileName ...

>  Generally prefer CONFIG in DAG file over
condor_submit_dag -config or individual
arguments

>  Specifying more than one configuration is an
error.

www.cs.wisc.edu/Condor

Per-DAG configuration
(cont)

>  Configuration entries not related to
DAGman are ignored by DAGman

>  Syntax like any other Condor config
file

39

www.cs.wisc.edu/Condor 40

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 41

Rescue DAGs

Run

Not run

A

B1

D

B2 B3

C1 C2 C3

www.cs.wisc.edu/Condor 42

Rescue DAGs (cont)
>  Save the state of a partially-completed

DAG
>  Created when a node fails or the
condor_dagman job is removed with
condor_rm
h DAGMan makes as much progress as possible in

the face of failed nodes

www.cs.wisc.edu/Condor

Rescue DAGs (cont)

>  Automatically run when you re-run
the original DAG (unless –f) (since
7.1.0)

>  DAGman immediately exits after
writing a rescue DAG file

43

www.cs.wisc.edu/Condor

Rescue DAGs (cont)

> New in condor version 7.7.2, the
Rescue DAG file, by default, is only a
partial DAG file

> DAGMAN_WRITE_PARTIAL_RESCUE =
False turns this off.

44

www.cs.wisc.edu/Condor

Rescue DAGs (cont)

>  A partial Rescue DAG file contains
only information about which nodes
are done, and the number of retries
remaining for nodes with retries.

>  Does not contain information such as
the actual DAG structure and the
specification of the submit file for
each node job.

45

www.cs.wisc.edu/Condor

Rescue DAGs (cont)

>  Partial Rescue DAGs are automatically
parsed in combination with the
original DAG file, which contains
information such as the DAG
structure.

46

www.cs.wisc.edu/Condor

Rescue DAGs (cont)

>  If you change something in the
original DAG file, such as changing
the submit file for a node job, that
change will take effect when running
a partial Rescue DAG.

47

www.cs.wisc.edu/Condor 48

Rescue DAG naming

>  DagFile.rescue001,
DagFile.rescue002, etc.

>  Up to 100 by default (last is overwritten
once you hit the limit)

>  Newest is run automatically when you re-
submit the original DagFile

>  condor_submit_dag -dorescuefrom number
to run specific rescue DAG

www.cs.wisc.edu/Condor 49

Recovery mode

> Happens automatically when DAGMan
is held/released, or if DAGMan
crashes and restarts

> Node jobs continue
>  DAGMan recovers node job state
>  DAGMan is robust in the face of

failures

www.cs.wisc.edu/Condor 50

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 51

PRE and POST scripts
>  DAGMan allows PRE and/or POST scripts

h Not necessarily a script: any executable
h Run before (PRE) or after (POST) job

>  In the DAG input file:
Job A a.submit
Script PRE A before-script arguments
Script POST A after-script arguments

>  No spaces in script name or arguments

www.cs.wisc.edu/Condor

Why PRE/POST scripts?

>  Set up input
>  Check output
>  Create submit file (dynamically)
>  Force jobs to run on same machine

52

www.cs.wisc.edu/Condor 53

Script argument
variables

>  $JOB: node name
>  $JOBID: Condor ID (cluster.proc)
>  $RETRY: current retry
>  $MAX_RETRIES: max # of retries
>  $RETURN: exit code of Condor/Stork

job (POST only)

www.cs.wisc.edu/Condor

Script argument variables
(cont)

> $PRE_SCRIPT_RETURN: More on this
below (POST only)

> $DAG_STATUS: A number indicating
the state of DAGman. See the
manual for details.

> $FAILED_COUNT: is simply the
number of nodes that have failed in
the DAG

54

www.cs.wisc.edu/Condor

NOOP nodes

>  It is useful to have the ability to
check your work.

>  Appending the keyword NOOP causes a
job to not be run, without affecting
the DAG structure.

>  The pre- and post- scripts of NOOP
nodes will be run. If this is not
desired, comment them out.

55

www.cs.wisc.edu/Condor 56

DAG node with scripts

>  PRE script, Job, or POST
script determines node
success or failure (table in
manual gives details)

PRE script

Condor
job

POST script

www.cs.wisc.edu/Condor

DAG node with scripts
(cont)

>  If PRE script fails, job is not run. The
POST script is run (new in 7.7.2). Set
DAGMAN_ALWAYS_RUN_POST =
False to get old behavior

57

www.cs.wisc.edu/Condor

DAG node with scripts:
PRE_SKIP

> New feature in Condor version 7.7.2.
> Here is the syntax:

JOB A A.cmd

SCRIPT PRE A A.pre

PRE SKIP A non-zero integer

> Here, the PRE script of A will run. If
the script exits with the indicated
value, this is normally a failure.

58

www.cs.wisc.edu/Condor

DAG node with scripts:
PRE_SKIP (cont)

>  DAGman instead recognizes this as an
indication to succeed this node
immediately, and skip the node job
and POST script.

>  If the PRE script fails with a
different value, the node job is
skipped, and the postscript runs.

59

www.cs.wisc.edu/Condor

DAG node with scripts:
PRE_SKIP (cont)

> When the postscript runs, the
$PRE_SCRIPT_RETURN variable
contains the return value from the
prescript. (See manual for specific
cases)

60

www.cs.wisc.edu/Condor

NOOP nodes

>  It is useful to have the ability to
check your work.

>  Appending the keyword NOOP causes a
job to not be run, without affecting
the DAG structure.

>  The pre- and post- scripts of NOOP
nodes will be run. If this is not
desired, comment them out.

61

www.cs.wisc.edu/Condor

NOOP nodes (ex)

> Here is an example:
file name: diamond.dag

Job A a.submit NOOP

Job B b.submit NOOP

Job C c.submit NOOP

Job D d.submit NOOP

Parent A Child B C

Parent B C Child D

>  Submitting this to DAGman will cause
DAGman to exercise the DAG,
without actually running anything.

62

www.cs.wisc.edu/Condor 63

Node retries
>  In case of transient errors
>  Before a node is marked as failed. . .

h Retry N times. In the DAG file:
Retry C 4
(to retry node C four times before calling

the node failed)
h Retry N times, unless a node returns

specific exit code. In the DAG file:
Retry C 4 UNLESS-EXIT 2

www.cs.wisc.edu/Condor 64

Node retries, continued
> Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value:

node fails

One node failure:
retry

Out of retries:
node fails

www.cs.wisc.edu/Condor 65

Node variables
>  To re-use submit files
>  In DAG input file
VARS JobName
varname="string" [varname="string"...]

>  In submit description file
$(varname)

>  varname can only contain alphanumeric
characters and underscore

>  varname cannot begin with “queue”
>  varname is not case-sensitive
>  Cannot use variables in a log file name (for now)

www.cs.wisc.edu/Condor

Node variables (cont)

>  Value cannot contain single quotes;
double quotes must be escaped

>  The variable $(JOB)contains the
DAG node name of the job.

> More than one VARS line per job.
>  DAGman warns if a VAR is defined

more than once for a job.

66

www.cs.wisc.edu/Condor 67

Nested DAGs

www.cs.wisc.edu/Condor 68

Nested DAGs (cont)
>  Runs the sub-DAG as a job within the top-

level DAG
>  In the DAG input file:
SUBDAG EXTERNAL JobName DagFileName

>  Any number of levels
>  Sub-DAG nodes are like any other
>  Each sub-DAG has its own DAGMan

h Separate throttles for each sub-DAG

www.cs.wisc.edu/Condor

Why nested DAGs?

>  Scalability
>  Re-try more than one node
>  Dynamic workflow modification
>  DAG re-use

69

www.cs.wisc.edu/Condor 70

Throttling
>  Limit load on submit machine and pool

h  Maxjobs limits jobs in queue/running
h  Maxidle submit jobs until idle limit is hit
h  Maxpre limits PRE scripts
h  Maxpost limits POST scripts

>  All limits are per DAGMan, not global for
the pool or submit machine

>  Limits can be specified as arguments to
condor_submit_dag or in configuration

www.cs.wisc.edu/Condor 71

Node categories
Setup

Cleanup

Big job

Small job Small job Small job

Big job

Small job Small job Small job

Big job

Small job Small job Small job

www.cs.wisc.edu/Condor 72

Node category throttles
>  Useful with different types of jobs that

cause different loads
>  In the DAG input file:
CATEGORY JobName CategoryName
MAXJOBS CategoryName MaxJobsValue

>  Applies the MaxJobsValue setting to only
jobs assigned to the given category

>  Global throttles still apply

www.cs.wisc.edu/Condor 73

Splices
SPLICE A

B

C

A

A

C

C

B

D

B+A

B+B B+C

B+D

www.cs.wisc.edu/Condor 74

Splices (cont)
>  Directly includes splice’s nodes within the

top-level DAG
>  In the DAG input file:
SPLICE JobName DagFileName

>  Splices cannot have PRE and POST scripts
(for now)

>  No retries
>  Splice DAGs must exist at submit time

www.cs.wisc.edu/Condor 75

Why splices?

>  Advantages of splices over sub-DAGs
h Reduced overhead (single DAGMan

instance)
h Simplicity (e.g., single rescue DAG)
h Throttles apply across entire workflow
h DAG re-use

www.cs.wisc.edu/Condor 76

DAG input files for splice
diagram

Splice
splice2.dag
Job A A.submit
Job B B.submit
Job C C.submit
Job D D.submit
Parent A Child B C
Parent B C Child D

Top level
splice1.dag
Job A A.submit
Splice B splice2.dag
Job C C.submit
Parent A Child B
Parent B Child C

www.cs.wisc.edu/Condor 77

DAG abort

>  In DAG input file:
ABORT-DAG-ON JobName AbortExitValue

 [RETURN DagReturnValue]

>  If node value is AbortExitValue, the entire
DAG is aborted, implying that jobs are
removed, and a rescue DAG is created.

>  Can be used for conditionally skipping nodes
(especially with sub-DAGs)

www.cs.wisc.edu/Condor

FINAL Nodes

>  Introduced in Condor version 7.7.5
> Use FINAL in place of JOB in DAG

file.
>  At most one FINAL node per

DAGman.
>  FINAL nodes cannot have parents or

children.

78

www.cs.wisc.edu/Condor

FINAL Nodes (cont)

>  The FINAL node is submitted after
DAGman has made as much progress
as possible.

>  In case of a DAG failure, the FINAL
node is run; some nodes may not be
run, but the FINAL node will be run.

79

www.cs.wisc.edu/Condor

FINAL Nodes (cont)

>  Success or failure of the FINAL node
determines the success of the DAG
run.

>  It is envisioned that PRE and POST
scripts of FINAL nodes will use
$DAG_STATUS and $FAILED_COUNT

80

www.cs.wisc.edu/Condor 81

Node priorities
>  In the DAG input file:
PRIORITY JobName PriorityValue

>  Determines order of submission of ready
nodes

>  Does not violate or change DAG semantics
>  Higher numerical value equals “better”

priority

www.cs.wisc.edu/Condor

Node priorities (cont)

>  Child nodes get the largest priority of
parents. This may or may not be useful. Let
us know if you want a different policy

>  For subdags, pretend that the subdag
is spliced in.

>  DAGman priorities are copied to job
priorities

82

www.cs.wisc.edu/Condor 83

Depth-first DAG traversal
>  Get some results more quickly
>  Possibly clean up intermediate files more quickly
>  DAGMAN_SUBMIT_DEPTH_FIRST=True

www.cs.wisc.edu/Condor 84

Multiple DAGs

>  On the command line:
condor_submit_dag dag1 dag2 ...

>  Runs multiple, independent DAGs
>  Node names modified (by DAGMan) to

avoid collisions
>  Useful: throttles apply across DAGs
>  Failure produces a single rescue DAG

www.cs.wisc.edu/Condor 85

Cross-splice node
categories

>  Prefix category name with “+”
MaxJobs +init 2
Category A +init

>  See the Splice section in the manual
for details

www.cs.wisc.edu/Condor

DAGMAN_HOLD_CLAIM_TIME

>  An optimization introduced in Condor
version 7.7.5 as a configuration option

>  If a DAGman job has child nodes, it
will instruct the condor schedd to
hold the machine claim for the
integer number of seconds that is the
value of this option, which defaults to
20.

86

www.cs.wisc.edu/Condor

DAGMAN_HOLD_CLAIM_TIME

>  Thus, upon completion, the schedd will
not go through a negotiation cycle

>  before starting the job; it will simply
start a new job with the old claim on
the startd we have just finished
using.

87

www.cs.wisc.edu/Condor

DAGMAN_USE_STRICT

> New configuration option introduced
in Condor version 7.7.0

>  Think of it as -Werror for DAGman.
>  If set to 0, no warnings become

errors.
>  If set to 3, all warnings become

errors.

88

www.cs.wisc.edu/Condor

DAGMAN_USE_STRICT (ex)

> One place where we check for
warnings is the log file code: if we see
strangeness, we print out a warning.
If you are paranoid, you might want
DAGman to write a rescue DAG and
exit immediately, and set option = 3.

89

www.cs.wisc.edu/Condor 90

More information

>  There’s much more detail, as well as
examples, in the DAGMan section of
the online Condor manual.

www.cs.wisc.edu/Condor 91

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features

www.cs.wisc.edu/Condor 92

Relevant Links

>  DAGMan:
www.cs.wisc.edu/condor/dagman

>  Pegasus: http://pegasus.isi.edu/
>  Makeflow:

http://nd.edu/~ccl/software/makeflow/
>  For more questions:

condor-admin@cs.wisc.edu

