Grid Computing @The Hartford…

• Using Condor in our production environment since 2004
• Computing Environment
 – Two pools (Hartford, CT and Boulder, CO)
 – Linux central managers and schedulers
 – Windows execute nodes (~7000 cores)
 – CycleServer from Cycle Computing LLC
• Workload
 – Mix of off-the-shelf tools and in-house custom software
 – Actuarial modeling
 – Financial reporting
 – Compliance
 – Enterprise risk management
 – Hedging
 – Stress testing
The Challenge…

• Compress the time it takes to compute market sensitivities to enable rapid response to large market movements
 – Current compute time: ~8 hours on ~3000 cores
 – Target: A.S.A.P. (P being practical)
• Compress the time it takes to simulate our hedging program
 – Current compute time: ~5 days on ~5000 cores
 – Target: 1 day
• Create a mechanism to calculate specific sensitivities in near real time
• Support Entire Model Portfolio: ~20 models
• Maintain Accuracy and Precision
• Enterprise IT Targets
 – Reduce Datacenter Footprint
 – Reduce Costs
The Approach...(everything’s on the table)

- **Modeling**
 - Variance Reduction
 - Optimize algorithms
 - Eliminate Redundant or Un-necessary Work

- **Processes**
 - Optimize submission pipeline
 - Reduce file transfers
 - Implement Master/Worker framework

- **Models**
 - Optimize code
 - Caching
 - Dynamic scenario generation
 - CUDA/OpenCL/OpenMP

- **Infrastructure**
 - Improve storage
 - GPUs
The Plan…

- **Modeling**
 - Test convergence with low-discrepancy sequences
 - Evaluate closed-form or replicating portfolio approach
 - Remove un-necessary workload

- **Processes**
 - Interleave scenario/liability/asset submissions
 - Improve nested stochastic analysis
 - Develop Master/Worker scheduling

- **Models**
 - Port model portfolio to CUDA
 - Optimize algorithms

- **Purchase GPU Infrastructure**
 - 250 NVIDIA Tesla 2070s
The Results...

- **Modeling**
 - Convergence achieved faster with low-discrepancy sequences
 - 2x improvement
 - Removed non-essential tasks
 - 2x improvement

- **Processes**
 - Streamlined submission pipeline for scenario/liability/assets
 - Eliminated ~1TB/run of file transfer
 - Using Work Queue for Master/Worker
 - 4-6x improvement
The Results (cont.)…

• Models
 – Developed code generator for CUDA
 – Automated development and end-user automation (priceless!)
 – DirectlyCompiled Spec Models
 – Ported entire model portfolio to CUDA (GPU) and C++ (CPU)
 – 40-60x improvement

• Infrastructure
 – 125 Servers with 250 M2070s
 – 3x reduction in data center footprint
 – 50% cost reduction

• Summary
 – Success!
 – Improved Performance
 – Reduced Cost
 – Improved our long-term capabilities
What’s Next?
Complete integration of GPUs into our Condor environment

• Quickly find the GPU nodes
 – GPU = “None”
 – SLOT1_GPU =“NVIDIA”
 – SLOT2_GPU=“NVIDIA”
 – STARTD_EXPRS = $(STARTD_EXPRS), GPU

• Identify GPGPU submissions
 – +GPGPU=True

• Reserve Slots for GPGPU jobs
 – START=(((SlotID < 3) && (GPUGPU =?= True)) || ((SlotID > 2) && (GPGPU =!= True)))

• Work with Todd on GPU wish list
 – Benchmarking
 – Monitoring (corrupt memory, etc.)
What’s Next?
Refine our job scheduling architecture

• Minimize Scheduling Overhead
 – Continue development on our Work Queue implementation
 – Leverage new Condor features – key_claim_idle?

• Optimize Work Distribution
 – Need to prevent starvation of fast GPU resources while still leveraging existing dedicated and scavenged CPUs
 – Integrate with CycleServer

• High-availability/disaster recovery
 – Persistent queues
 – Support for multiple resource pools
What’s Next?
Expand Condor’s footprint @The Hartford

• Condor for Server Utilization Monitoring
 – Install Condor on all servers
 – Improved reporting and,
 – Foot-in-the-door for scavenging!
• Condor in the Cloud
• Condor Interoperability (MS HPC Server)
• Evangelize Condor to ISVs
Thank you!

Bob Nordlund
Enterprise Risk Management Technology
The Hartford
robert.nordlund@thehartford.com