
Using MW for Mixed-Integer Nonlinear Problems

G. Nannicini1, P. Belotti2, J. Lee3,
J. Linderoth4, F. Margot5, A. Wächter6

1 Singapore University of Technology and Design, Singapore and
Sloan School of Management, MIT, Cambridge, MA

2 Dept. of Mathematical Sciences, Clemson University, Clemson, SC
3 Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI

4 Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI
5 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA

6 Industrial Engineering and Management Sciences, Northwestern University, Chicago, IL

May 2, 2012

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 1 / 18



Summary of Talk

1 Introduction

2 Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 2 / 18



1 Introduction

2 Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 3 / 18



Nonconvex MINLP

Consider a mathematical program of this form:

min f(x)
s.t. gj(x) ≤ 0 ∀j ∈ M

xLi ≤ xi ≤ xUi ∀i ∈ N

xi ∈ Z ∀i ∈ NI ,















P

with N = {1, . . . , n}, M = {1, . . . ,m}, xL ∈ (R ∪ {−∞})n,
xU ∈ (R ∪ {+∞})n

The functions f, gj ’s need not be convex: nonconvex MINLP

Very expressive class of mathematical programs, but difficult to solve

Applications everywhere

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 4 / 18



LP-based Branch-and-Bound

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 5 / 18



LP-based Branch-and-Bound

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 5 / 18



LP-based Branch-and-Bound

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 5 / 18



LP-based Branch-and-Bound

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 5 / 18



LP-based Branch-and-Bound

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 5 / 18



LP-based Branch-and-Bound

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 5 / 18



1 Introduction

2 Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 6 / 18



Motivation

Many problems cannot be solved with current technology

A general-purpose brute-force solver can be used to certify optimality
of solutions and facilitate comparisons

Software is available, such as Couenne: an open-source solver for
nonconvex MINLPs

Coupe (COUenne Parallel Extension): a solver that runs on Condor and
uses COIN-OR Couenne as main Branch-and-Bound code (for
convexification, heuristics, etc.)

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 7 / 18



Issues when implementing on Condor

Each machine could disappear at any moment: cannot rely on
completing a specific computation in a timely fashion!

No shared memory

Slow communication (TCP/IP)

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 8 / 18



MW: Master/Worker

Master/worker paradigm: one machine “knows” everything and
dispatches tasks to the workers, then puts together the results

The master should do as little work as possible (besides managing the
workers)

We should minimize the number of messages exchanged between the
master and the workers: a worker should be able to work on its own
for a few minutes

Cannot expect workers to complete their tasks in a specific order

Implemented through the MW library: deals with managing the
machines, communicating results

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 9 / 18



Structure

The master reads the problem, computes the convexification, and sets
up tasks for the workers

Tasks:
◮ Branch-and-Bound
◮ Bound tightening
◮ Heuristics

All these things can be done in any order, and the master takes care
of putting together the results

The master decides the number of workers, overall strategy, deals
with ramp-up and ramp-down, . . .

Suitable for problems with easy LP but huge enumeration tree

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 10 / 18



Branch-and-Bound and tree search strategy

Branch-and-Bound task: the worker receives a node, performs
Branch-and-Bound for some time, sends back all remaining active
nodes

In other words, each worker explores a sub-tree of the full
Branch-and-Bound tree

If idle workers: best bound search at the workers, short time limit
(ramp-up)

If all workers have tasks: depth-first search at the workers with long
time limit, while the master still dispatches Branch-and-Bound tasks
in a best bound fashion

If master out of memory: depth-first search at the workers and master

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 11 / 18



Tree search strategy

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 12 / 18



Tree search strategy

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 12 / 18



Tree search strategy

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 12 / 18



Tree search strategy

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 12 / 18



Tree search strategy

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 12 / 18



What if something goes wrong?

The Branch-and-Bound library (Couenne and the underlying
components: COIN-OR Cbc and Clp) sometimes incurs into problems

It can happen, although rarely, that the solution process of one of the
LPs cycles indefinitely

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 13 / 18



What if something goes wrong?

The Branch-and-Bound library (Couenne and the underlying
components: COIN-OR Cbc and Clp) sometimes incurs into problems

It can happen, although rarely, that the solution process of one of the
LPs cycles indefinitely

Very rare event × 1 trillion trials = sometimes it happens

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 13 / 18



What if something goes wrong?

The Branch-and-Bound library (Couenne and the underlying
components: COIN-OR Cbc and Clp) sometimes incurs into problems

It can happen, although rarely, that the solution process of one of the
LPs cycles indefinitely

Very rare event × 1 trillion trials = sometimes it happens

Timeout mechanism:
◮ Periodically check for machines that did not report back after the

allotted time
◮ Force-remove them
◮ Reassign tasks

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 13 / 18



It sounds crazy, but. . .

Having a huge availability of CPU power opens up new possibilities:
◮ New branching schemes!
◮ New bound tightening algorithms!
◮ New heuristics!
◮ . . .

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 14 / 18



It sounds crazy, but. . .

Having a huge availability of CPU power opens up new possibilities:
◮ New branching schemes!
◮ New bound tightening algorithms!
◮ New heuristics!
◮ . . .

. . . but so far we have only implemented a new bound tightening
algorithm:

◮ Use truncated Branch-and-Bound searches to eliminate small parts of
the feasible space

◮ Adaptive selection of the size of the eliminated parts
◮ Very time consuming, but stronger than existing techniques
◮ We call this new algorithm Aggressive Probing

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 14 / 18



1 Introduction

2 Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 15 / 18



Testing the parallel solver Coupe

Setup:
◮ Perform traditional bound tightening at the root
◮ Apply Aggressive Probing at the root with a time limit of 3 minutes

per variable bound, then switch to Branch-and-Bound
◮ Periodically perform heuristics
◮ Remaining tasks are Branch-and-Bound

We solved two instances in the benchmark set MINLPLib for the first
time: space25a and waterx

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 16 / 18



Testing the parallel solver Coupe

space25a:
◮ with Aggressive Probing: 3.6 · 108 nodes, 153 days of computing time,

wall clock time 16 hours (298 average present workers, 75% utilization)
◮ without Aggressive Probing: 9.5 · 108 nodes, 543 days of computing

time, wall clock time 135 hours (133 average present workers, 70%
utilization)

waterx:
◮ with Aggressive Probing: 2.0 · 108 nodes, 211 days of computing time,

wall clock time 41 hours (199 average present workers, 60% utilization)
◮ without Aggressive Probing: 2.6 · 108 nodes, 288 days of computing

time, wall clock time 43 hours (227 average present workers, 69%
utilization)

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 17 / 18



Conclusions

Parallel solver that runs in an opportunistic environment and allows
for a fast exploration of huge enumeration trees

Simple but effective bound tightening algorithm that can be very
time-consuming, suitable for parallel computing

Found global optima for two instances for the first time

G. Nannicini (SUTD and MIT) MW for MINLP May 2, 2012 18 / 18


	Introduction
	Parallel Branch-and-Bound solver: Coupe
	Computational experiments

