Using MW for Mixed-Integer Nonlinear Problems

G. Nannicini¹, P. Belotti², J. Lee³, J. Linderoth⁴, F. Margot⁵, A. Wächter⁶

 ¹ Singapore University of Technology and Design, Singapore and Sloan School of Management, MIT, Cambridge, MA
² Dept. of Mathematical Sciences, Clemson University, Clemson, SC
³ Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI
⁴ Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI
⁵ Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
⁶ Industrial Engineering and Management Sciences, Northwestern University, Chicago, IL

May 2, 2012

MW for MINLP

Summary of Talk

Parallel Branch-and-Bound solver: Coupe

Computational experiments

Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

・ロン ・雪と ・ ヨン・

Nonconvex MINLP

• Consider a mathematical program of this form:

$$\min \begin{array}{cc} f(x) \\ s.t. & g_j(x) \le 0 \quad \forall j \in M \\ & x_i^L \le x_i \le x_i^U \quad \forall i \in N \\ & x_i \in \mathbb{Z} \quad \forall i \in N_I, \end{array} \right\}$$

with
$$N = \{1, \ldots, n\}$$
, $M = \{1, \ldots, m\}$, $x^L \in (\mathbb{R} \cup \{-\infty\})^n$, $x^U \in (\mathbb{R} \cup \{+\infty\})^n$

- The functions f, g_j 's need not be convex: nonconvex MINLP
- Very expressive class of mathematical programs, but difficult to solve
- Applications everywhere

G. Nannicini (SUTD and MIT)

MW for MINLP

G. Nannicini (SUTD and MIT)

MW for MINLE

イロト イヨト イヨト イヨト

2 Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

Image: A matched block of the second seco

Motivation

- Many problems cannot be solved with current technology
- A general-purpose brute-force solver can be used to certify optimality of solutions and facilitate comparisons
- Software is available, such as Couenne: an open-source solver for nonconvex MINLPs
- Coupe (COUenne Parallel Extension): a solver that runs on Condor and uses COIN-OR Couenne as main Branch-and-Bound code (for convexification, heuristics, etc.)

Issues when implementing on Condor

- Each machine could disappear at any moment: cannot rely on completing a specific computation in a timely fashion!
- No shared memory
- Slow communication (TCP/IP)

MW: Master/Worker

- Master/worker paradigm: one machine "knows" everything and dispatches tasks to the workers, then puts together the results
- The master should do as little work as possible (besides managing the workers)
- We should minimize the number of messages exchanged between the master and the workers: a worker should be able to work on its own for a few minutes
- Cannot expect workers to complete their tasks in a specific order
- Implemented through the MW library: deals with managing the machines, communicating results

Structure

- The master reads the problem, computes the convexification, and sets up tasks for the workers
- Tasks:
 - Branch-and-Bound
 - Bound tightening
 - Heuristics
- All these things can be done in any order, and the master takes care of putting together the results
- The master decides the number of workers, overall strategy, deals with ramp-up and ramp-down, ...
- Suitable for problems with easy LP but huge enumeration tree

Branch-and-Bound and tree search strategy

- Branch-and-Bound task: the worker receives a node, performs Branch-and-Bound for some time, sends back all remaining active nodes
- In other words, each worker explores a sub-tree of the full Branch-and-Bound tree
- If idle workers: best bound search at the workers, short time limit (ramp-up)
- If all workers have tasks: depth-first search at the workers with long time limit, while the master still dispatches Branch-and-Bound tasks in a best bound fashion
- If master out of memory: depth-first search at the workers and master

G. Nannicini (SUTD and MIT)

MW for MINLP

イロト イヨト イヨト イヨト

→ Ξ →

・ロト ・回ト ・ 回ト

→ Ξ →

・ロト ・回ト ・ 回ト

 $\exists \rightarrow$

Image: A matched block of the second seco

 $\exists \rightarrow$

Image: A matched block of the second seco

What if something goes wrong?

- The Branch-and-Bound library (Couenne and the underlying components: COIN-OR Cbc and Clp) sometimes incurs into problems
- It can happen, although rarely, that the solution process of one of the LPs cycles indefinitely

What if something goes wrong?

- The Branch-and-Bound library (Couenne and the underlying components: COIN-OR Cbc and Clp) sometimes incurs into problems
- It can happen, although rarely, that the solution process of one of the LPs cycles indefinitely
- Very rare event \times 1 trillion trials = sometimes it happens

What if something goes wrong?

- The Branch-and-Bound library (Couenne and the underlying components: COIN-OR Cbc and Clp) sometimes incurs into problems
- It can happen, although rarely, that the solution process of one of the LPs cycles indefinitely
- Very rare event imes 1 trillion trials = sometimes it happens
- Timeout mechanism:
 - Periodically check for machines that did not report back after the allotted time
 - Force-remove them
 - Reassign tasks

It sounds crazy, but...

• Having a huge availability of CPU power opens up new possibilities:

- New branching schemes!
- New bound tightening algorithms!
- New heuristics!
- ▶ ...

It sounds crazy, but...

• Having a huge availability of CPU power opens up new possibilities:

- New branching schemes!
- New bound tightening algorithms!
- New heuristics!
- ▶ ...
- ... but so far we have only implemented a new bound tightening algorithm:
 - Use truncated Branch-and-Bound searches to eliminate small parts of the feasible space
 - Adaptive selection of the size of the eliminated parts
 - Very time consuming, but stronger than existing techniques
 - ▶ We call this new algorithm AGGRESSIVE PROBING

Parallel Branch-and-Bound solver: Coupe

3 Computational experiments

Image: A math a math

Testing the parallel solver Coupe

Setup:

- Perform traditional bound tightening at the root
- Apply Aggressive Probing at the root with a time limit of 3 minutes per variable bound, then switch to Branch-and-Bound
- Periodically perform heuristics
- Remaining tasks are Branch-and-Bound
- We solved two instances in the benchmark set MINLPLib for the first time: space25a and waterx

Testing the parallel solver Coupe

• space25a:

- ▶ with Aggressive Probing: 3.6 · 10⁸ nodes, 153 days of computing time, wall clock time 16 hours (298 average present workers, 75% utilization)
- ▶ without Aggressive Probing: 9.5 · 10⁸ nodes, 543 days of computing time, wall clock time 135 hours (133 average present workers, 70% utilization)
- waterx:
 - ▶ with Aggressive Probing: 2.0 · 10⁸ nodes, 211 days of computing time, wall clock time 41 hours (199 average present workers, 60% utilization)
 - ▶ without Aggressive Probing: 2.6 · 10⁸ nodes, 288 days of computing time, wall clock time 43 hours (227 average present workers, 69% utilization)

Conclusions

- Parallel solver that runs in an opportunistic environment and allows for a fast exploration of huge enumeration trees
- Simple but effective bound tightening algorithm that can be very time-consuming, suitable for parallel computing
- Found global optima for two instances for the first time