
Putting Condor in a
Container

Applying Virtualization Techniques to Batch Systems
Brian Bockelman, UNL

Thursday, May 3, 12

This is a talk about
Virtualization

• This is not a talk about virtual machines.

Thursday, May 3, 12

To Virtualize

• virtualize |ˈvərCHo͞oəˌlīz|

• verb [with obj.]

• create a virtual version of (a computing
resource or facility).

• We will be virtualizing the worker node,
but not by using virtual machines.

Thursday, May 3, 12

Containers,
Broadly Speaking

• Partition system resources using the host
kernel.

• Do not run a complete virtual machine
with separate kernel, but run isolated user
processes partitioned from the rest of the
system.

• It creates a virtualized userland environment,
but all containers share the same kernel.

Defacto “implementation”: http://lxc.sourceforge.net/

Thursday, May 3, 12

http://lxc.sourceforge.net/
http://lxc.sourceforge.net/

Partitioning

• Containers typically take advantage of the resource
partitioning features available in newer kernels.

• These are typically implemented via “control
groups”, or “cgroups” or namespaces.

• Cgroups are control structures for managing sets of
processes in a Linux system.

• Different cgroup subsystems (“controllers”) may act
on these structures to control scheduler policy,
allocate/limit resources, or account for usage.
http://en.wikipedia.org/wiki/Cgroups

http://www.kernel.org/doc/Documentation/cgroups/
cgroups.txt

Thursday, May 3, 12

http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Cgroups
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

Cgroups Quick Intro
• The interface to cgroups is not a syscall, but a pseudo-

filesystem (like /proc):

• The above lines mount the cgroup controller, create a sub-
cgroup called “example_session”, and place the current shell in
that cgroup. Any activity started by this session (regardless of
daemonized or not!) will be managed by the “blkio” controller.
No, I didn’t say what blkio does yet...

• Each cgroup is a directory in the filesystem (provides familiar
semantics like sub-directories, Unix permissions to manage
the cgroup). Processes in the cgroup appear in the “tasks” file.

mkdir -p /cgroup/blkio
mount -t cgroup -o blkio /cgroup/blkio
mkdir /cgroup/blkio/example_session
echo $$ > /cgroup/blkio/example_session/tasks

See last year’s Condor Week talk:
http://research.cs.wisc.edu/condor/CondorWeek2011/presentations/bockelman-user-isolation.pdf

Thursday, May 3, 12

http://research.cs.wisc.edu/condor/CondorWeek2011/presentations/bockelman-user-isolation.pdf
http://research.cs.wisc.edu/condor/CondorWeek2011/presentations/bockelman-user-isolation.pdf

Goal: Containerize
Condor

• We want to expose the various partitioning
and management techniques in the Linux
kernel to Condor, allowing it to better
manage jobs.

• Think of it as a “blend” between a
“normal” batch job and a container, to
give Condor batch jobs features normally
associated with virtualization.

Thursday, May 3, 12

Containers in Condor

• I break up the work for “containerizing
Condor” into three categories:

• Isolation. Protecting jobs from each other.

• Accounting. Understanding the resources
the batch jobs use.

• Resource Management. Implementing
policies about what resources and how
much the jobs can access.

Thursday, May 3, 12

Isolation Models

• We typically isolate two jobs from each
other by using two different usernames.
Other possibilities exist:

• Process isolation (“PID Namespaces”).

• Filesystem isolation. Users see different
mounts.

Thursday, May 3, 12

Process View
Outside

sh-4.2# ps faux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 116492 1964 pts/1 S 06:33 0:00 /bin/sh
root 3 0.0 0.0 115660 1076 pts/1 R+ 06:34 0:00 ps faux

Inside

root 949 0.0 0.0 75320 576 ? Ss 2011 0:15 /usr/sbin/sshd -D
root 29796 0.0 0.1 123840 4432 ? S 06:27 0:00 _ sshd: bbockelm [priv]
bbockelm 29803 0.0 0.0 123840 2096 ? S 06:27 0:00 | _ sshd: bbockelm@pts/1
bbockelm 29804 0.0 0.0 116508 2212 pts/1 Ss 06:27 0:00 | _ -bash
root 29964 0.0 0.0 155920 2096 pts/1 S 06:33 0:00 | _ sudo ./ns_exec -cpm /bin/sh
root 29965 0.0 0.0 4272 340 pts/1 S 06:33 0:00 | _ ./ns_exec -cpm /bin/sh
root 29966 0.0 0.0 116492 1964 pts/1 S+ 06:33 0:00 | _ /bin/sh

CLI-based example, but same holds true for containers.
Wouldn’t it be nice if the batch system did this? :)

Thursday, May 3, 12

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1959
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1959

Ta-Da

[bbockelm@rcf-bockelman condor]$ condor_run ps faux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
bbockelm 1 0.0 0.0 114140 1236 ? SNs 12:14 0:00 /bin/bash /home/bbockelm/projects/
condor/.condor_run.8661
bbockelm 2 0.0 0.0 115668 1120 ? RN 12:14 0:00 ps faux

Thursday, May 3, 12

Mount Under Scratch

• In Condor 7.7.5, we introduced the
MOUNT_UNDER_SCRATCH config
parameter to the sysadmin.

• Any directory in the list will be mounted
from the job’s scratch directory (auto-
cleaned by Condor after the job).

• Equivalent to:
mount --bind /var/lib/execute/condor/execute/dir_1234/tmp \
 /tmp

Thursday, May 3, 12

No More Leaked Junk
in /tmp!

• Sysadmins rejoice!

Thursday, May 3, 12

Chroots
• In Condor 7.7.5, users are able to request a

specific chroot.

• The sysadmins assign each chroot they have
setup a name (such as “SL5”)

• The user adds “+RequestedChroot=SL5” to
their submit file.

• Improved isolation coming in 7.8: jobs are
completely isolated from each other in the
filesystem.

Thursday, May 3, 12

Filesystem View
• Containers typically use chroot to provide

a completely unique filesystem.

[root@red-d15n2 ~]# ls /
bin cgroup cvmfs etc lib lost+found misc net proc sbin srv tmp var
boot chroot dev home lib64 media mnt opt root selinux sys usr
[root@red-d15n2 ~]# ls /chroot/sl5-v1/root/
bin boot builddir dev etc home lib lib64 media mnt opt proc root sbin selinux srv sys tmp usr var
[root@red-d15n2 ~]# chroot /chroot/sl5-v1/root/
bash-3.2# ls /
bin boot builddir dev etc home lib lib64 media	 mnt opt proc	 root sbin selinux srv sys tmp usr var

Thursday, May 3, 12

Chroot at HCC

• Our sysadmins want to run RHEL6 for
manageability reasons.

• The experiment that pays our salary
requires RHEL5.

• Idea: Create a RHEL5 chroot for each host.

Thursday, May 3, 12

Chroot setup

RHEL6 Host

/chroot/sl5-v1//
home

proc

dev
 var/lib/condor/execute/dir_1234
 var/lib/condor/execute/dir_1234/tmp

home

proc

dev

bind mount

 var/lib/condor/execute/dir_1234

tmp

bin
usr
lib

= per job bind mount = system-wide mount
Thursday, May 3, 12

Mixed-mode Pools

SL5 Host
NAMED_CHROOT=SL5=/

SL6 Host
NAMED_CHROOT= \
 SL5=/chroot/sl5, SL6=/

SL5 chroot in
/chroot/sl5

Submit Host:
Submit File includes

+RequestedChroot=”SL5”

Thursday, May 3, 12

Chroot at HCC
• We have a small wrapper around yum called “chroot-tool” to

layout the RHEL5 filesystem.

• Puppet manages bind mounts and the invocation of chroot-tool.

• Each time we change our userspace configuration, we deploy a
new chroot (i.e., /chroot/sl5-v4).

• Puppet manages where the symlink /chroot/sl5 points.

• Condor starts jobs in /chroot/sl5.

• Exercise for user: convince yourself we can do atomic
upgrades and rollbacks.

https://github.com/bbockelm/RHEL5-chroot

https://github.com/bbockelm/hcc-config/blob/master/
modules/chroot/manifests/init.pp

Thursday, May 3, 12

https://github.com/bbockelm/RHEL5-chroot
https://github.com/bbockelm/RHEL5-chroot
https://github.com/bbockelm/hcc-config/blob/master/modules/chroot/manifests/init.pp
https://github.com/bbockelm/hcc-config/blob/master/modules/chroot/manifests/init.pp
https://github.com/bbockelm/hcc-config/blob/master/modules/chroot/manifests/init.pp
https://github.com/bbockelm/hcc-config/blob/master/modules/chroot/manifests/init.pp

Accounting

• Linux has some nice statistics per process,
but Condor wants accounting per job.

• CPU accounting is OK; sum CPU usage
of all job processes. Works except when
it doesn’t.

• Memory accounting is HORRIBLE!

Thursday, May 3, 12

Question

• What is the memory footprint of “sleep
5m”?

Thursday, May 3, 12

Memory Mess

• Summing up processes’s memory attributes
is a MESS in Linux.

• This does not take into account sharing
between processes. In a modern Linux
system - and in today’s jobs - there is a lot
of sharing.

• Makes today’s batch systems wildly
inaccurate for accounting.

Thursday, May 3, 12

Condor in 7.7.0

• Create a cgroup per job relative to a base cgroup
(admin-configured). Base cgroup is done so you
can manage Condor separately from the system.

• Somewhat equivalent to the following:

[root@red-d15n2 ~]# mkdir -p /cgroup/memory/condor/job_1234_5
[root@red-d15n2 ~]# echo $$ > /cgroup/memory/condor/job_1234_5/tasks
[root@red-d15n2 ~]# cat /cgroup/memory/condor/job_1234_5/tasks
13314
16521
[root@red-d15n2 ~]# bash
[root@red-d15n2 ~]# cat /cgroup/memory/condor/job_1234_5/tasks
13314
16522
16531

Thursday, May 3, 12

Memory Accounting

• Tons of statistics can be mined from the
memory controller and passed back to
Condor.

[root@red-d15n2 ~]# cat /cgroup/memory/condor/memory.stat
cache 0
rss 634880
mapped_file 0
pgpgin 602
pgpgout 447
swap 0
inactive_anon 0
active_anon 569344
inactive_file 0
active_file 0
unevictable 0
hierarchical_memory_limit 9223372036854775807
hierarchical_memsw_limit 9223372036854775807
total_cache 0
total_rss 634880
total_mapped_file 0
total_pgpgin 602
total_pgpgout 447
total_swap 0
total_inactive_anon 0
total_active_anon 569344
total_inactive_file 0
total_active_file 0
total_unevictable 0

Thursday, May 3, 12

(OOPS)

• New features, new failure modes.

• https://bugzilla.redhat.com/show_bug.cgi?
id=816365

• Set “noswapaccount” kernel boot
parameter.

Thursday, May 3, 12

https://bugzilla.redhat.com/show_bug.cgi?id=816365
https://bugzilla.redhat.com/show_bug.cgi?id=816365
https://bugzilla.redhat.com/show_bug.cgi?id=816365
https://bugzilla.redhat.com/show_bug.cgi?id=816365

Network Accounting

• We are extremely interested in knowing the
per-job network I/O figures:

• Helps us understand if site planning is right.

• Give appropriate information back to users
- and trace a bit about what they did on
the network.

• Compare costs, dollar-for-dollar, against
EC2.

http://osgtech.blogspot.com/2011/12/network-accounting-
for-condor.html

Thursday, May 3, 12

http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html

Network Namespaces
• What’s the solution? Namespaces!

• The “network namespace” is a namespace that
can interact with a subset of the network
devices on the system.

• The general idea is to create a per-job network
device, lock the job to that network device using
namespaces, and then do iptables-based
accounting for the network device.

• Approach is illustrated on next slides...

Thursday, May 3, 12

Network Namespaces:
Flipbook

Thursday, May 3, 12

Network Namespaces:
Flipbook

Thursday, May 3, 12

Network Namespaces:
Flipbook

Thursday, May 3, 12

Network Namespaces:
Flipbook

Thursday, May 3, 12

Network Namespaces:
Flipbook

Thursday, May 3, 12

Network Namespaces:
Flipbook

Thursday, May 3, 12

Accounting Portion

• Each time a packet passes through an
iptables rule, it is counted.

• While the job runs and finishes, iptables is
periodically read, and each rule is published
in the ClassAd.

• The final ClassAd goes to the accounting
system, and we can send the “EC2 bill”.

Thursday, May 3, 12

Resulting Chain
Chain JOB_12345 (2 references)
 pkts bytes target prot opt in out source destination
 3 579 ACCEPT all -- veth0 em1 anywhere 129.93.0.0/16 /* OutgoingInternal */
 0 0 ACCEPT all -- veth0 em1 anywhere !129.93.0.0/16 /* OutgoingExternal */
 7 674 ACCEPT all -- em1 veth0 129.93.0.0/16 anywhere state RELATED,ESTABLISHED /* IncomingInternal */
 0 0 ACCEPT all -- em1 veth0 !129.93.0.0/16 anywhere state RELATED,ESTABLISHED /* IncomingExternal */
 0 0 REJECT all -- any any anywhere anywhere reject-with icmp-port-unreachable

Resulting ClassAd Snippet

NetworkOutgoingInternal = 579
NetworkOutgoingExternal = 0

NetworkIncomingInternal = 674
NetworkIncomingExternal = 0

Thursday, May 3, 12

Start Imagining...
• We used this for accounting. There are other possibilities:

• Per-job firewall rules.

• Separate VLAN for certain jobs.

• Maybe have job traffic for “blessed users” bypass the
campus firewall?

• Have certain jobs connect to a network segment from
a different site.

• Basically, this provides Condor with a “hook” into the
network. Opens the doors to better-coordinated
network management in Condor.

Thursday, May 3, 12

Resource Management
• POSIX provides few “handles” for resource

management.

• We can measure resources used (accounting).
Getting better.

• However, what happens when the process uses
more resources than requested? Outside killing
the job, not much!

• Thus, we encourage users to request the “worst
case resource usage”, leading to poorer utilization.

Not surprisingly, we’ll investigate what the kernel has been
up to!

Thursday, May 3, 12

Memory Management
• Consider this situation in Condor: 2 jobs

on a machine with 4GB RAM, asking for
2GB each. Consider the current usage:

Job 1
Job 2

2 GB

What happens if Job 2 allocates 1GB?

1 GB

Thursday, May 3, 12

Memory Management

• You could:

• (Today) Kill off Job 2.

• (Today) Do nothing. There is plenty of
memory on the system.

• (With memory cgroup) Swap out 1GB of
Job 2, there’s a hard limit.

Thursday, May 3, 12

Memory Management

Job 1 Job 2

2 GB

1 GB

What about if Job 2 allocates 1GB now?
The job must go into swap!

Today, you can kill the job or
Have random pages from both jobs swapped out.

With cgroups, you can also have a “soft limit” where
Job 2 can take up 250MB more of RAM, but then only

have Job 2 swap.
Thursday, May 3, 12

Memory in cgroups
• The memory cgroup provides both “soft” and

“hard” limits.

• Soft limits allow you to use idle RAM, but when
the system goes into swap, the “nice” job might
see some interruption.

• Hard limits forces the “bad job” to start
swapping once it hits 1-byte over the limit.

• In 7.9, this can be controlled by the startd using
“MEMORY_LIMIT”.

Thursday, May 3, 12

Conclusions

• We tend to view “the world” as black or white: is
it a batch job or a virtual machine?

• By using containers, we have the ability to mix
techniques normally associated with VMs into
batch jobs.

• The power of partitioning and isolation, without
the headaches of VM management.

• Basically, if you can do it in KVM (with respect
to partitioning), you can do it in Condor!

Thursday, May 3, 12

One More Thing

Thursday, May 3, 12

Memory Cgroup and
the OOM

• If the OOM-killer needs to kill a process in
a memory cgroup, it can notify a subscribed
process and wait for it to act instead.

• HENCE: condor_procd could manage the
OOM-killer!

• Sounds like I have coding to do...

Thursday, May 3, 12

Etc

• What did I skip during this talk?

• Block I/O.

• CPU fairsharing and CPU sets.

• Process killing with the freeze controller.

• NFS mount statistics

• See a prior presentation here: http://www.biggrid.nl/
news-and-events/singleview/back_to/news-and-
events/article/e-infrastructure-colloquium/

Thursday, May 3, 12

http://www.biggrid.nl/news-and-events/singleview/back_to/news-and-events/article/e-infrastructure-colloquium/
http://www.biggrid.nl/news-and-events/singleview/back_to/news-and-events/article/e-infrastructure-colloquium/
http://www.biggrid.nl/news-and-events/singleview/back_to/news-and-events/article/e-infrastructure-colloquium/
http://www.biggrid.nl/news-and-events/singleview/back_to/news-and-events/article/e-infrastructure-colloquium/
http://www.biggrid.nl/news-and-events/singleview/back_to/news-and-events/article/e-infrastructure-colloquium/
http://www.biggrid.nl/news-and-events/singleview/back_to/news-and-events/article/e-infrastructure-colloquium/

Mount Statistics*

• /proc/self/mountstats provides a wealth of statistics - differs per filesystem,
but NFS in particular provides a huge number of statistics (even for each op
type!)

• With FS namespaces, should be possible to start doing this “per job”.

* Future work! What NFS statistics do you want to
see from the batch system per-job?

device hcc-gridnfs:/osg/data mounted on /opt/osg/data with fstype nfs4 statvers=1.0
	 opts:
	
rw,vers=4,rsize=32768,wsize=32768,namlen=255,acregmin=3,acregmax=60,acdirmin=30,acdirmax=60,h
ard,proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=172.16.15.2,minorversion=0,local_lock=no
ne
	 age:	568167
	 caps:	 caps=0x7ff7,wtmult=512,dtsize=32768,bsize=0,namlen=255
	 nfsv4:	 bm0=0xfdffafff,bm1=0xf9be3e,acl=0x0
	 sec:	flavor=1,pseudoflavor=1
	 events:	 60 1 0 0 0 3 6 0
	 bytes:	 0 0 0 0 0 0 0 0
	 RPC iostats version: 1.0 p/v: 100003/4 (nfs)
	 xprt:	 tcp 0 0 31 0 0 84 84 0 84 0
	 per-op statistics

Thursday, May 3, 12

Block I/O

• Similar story for block I/O. We can now
access the information per job instead of
per system or per process.

[root@red-d15n2 ~]# cat /cgroup/blkio/blkio.io_serviced
8:48 Read 383
8:48 Write 0
8:48 Sync 383
8:48 Async 0
8:48 Total 383
8:32 Read 383
8:32 Write 0
8:32 Sync 383
8:32 Async 0
8:32 Total 383
8:16 Read 548172
8:16 Write 930060
8:16 Sync 996051
8:16 Async 482181
8:16 Total 1478232
8:0 Read 614395
8:0 Write 1024232
8:0 Sync 1074539
8:0 Async 564088
8:0 Total 1638627
Total 3117625

Thursday, May 3, 12

Process Killing

• It’s a side-topic, but if the batch system
leaks processes, you don’t manage the
resource well!

• With PID namespaces, if the initial
process (PID=1) dies, all other processes
in that namespace are wiped out.

• If not using PID namespaces, we can use
the “freeze” controller.

Thursday, May 3, 12

CPU fairsharing!
• With the cpu cgroup controller, we can fairshare the

system’s overall CPU time.

• You can violate the amount of CPU you were
given if there’s time available, but the amount
allocated to each job.

• The amount of CPU you get are relative to the
number of shares you have in your sibling cgroups.

[root@red-d15n2 ~]# cat /cgroup/cpu/cpu.shares
1024
[root@red-d15n2 ~]# cat /cgroup/cpu/condor/cpu.shares
512
[root@red-d15n2 ~]# cat /cgroup/cpu/condor/job_1234_0/cpu.shares
128

Thursday, May 3, 12

