

Condor Project

Computer Sciences Department
University of Wisconsin-Madison

Condor and Workflows:
An Introduction

Condor Week 2011

Kent Wenger

www.cs.wisc.edu/Condor 2

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 3

My jobs have
dependencies…

Can Condor help solve my
dependency problems?

Yes!

Workflows are the

answer

www.cs.wisc.edu/Condor 4

What are workflows?

>  General: a sequence of connected
steps

> Our case
h Steps are Condor jobs
h Sequence defined at higher level
h Controlled by a Workflow Management

System (WMS), not just a script

www.cs.wisc.edu/Condor 5

Workflow example
Set up
input

Collate
output

Process Process Process Process Process

www.cs.wisc.edu/Condor 6

Workflows – launch and forget
›  A workflow can take days, weeks or even months
›  Automates tasks user could perform manually…

h But WMS takes care of automatically
›  Enforces inter-job dependencies
›  Includes features such as retries in the case of

failures – avoids the need for user intervention
›  The workflow itself can include error checking
›  The result: one user action can utilize many

resources while maintaining complex job inter-
dependencies and data flows

www.cs.wisc.edu/Condor 7

Workflow tools

>  DAGMan: Condor’s workflow tool
>  Pegasus: a layer on top of DAGMan

that is grid-aware and data-aware
> Makeflow: not covered in this talk
> Others…
>  This talk will focus mainly on DAGMan

www.cs.wisc.edu/Condor 8

LIGO inspiral search
application

>  Describe…

Inspiral workflow application is the work of Duncan Brown, Caltech,

Scott Koranda, UW Milwaukee, and the LSC Inspiral group

www.cs.wisc.edu/Condor 9

How big?

> We have users running 500k-job
workflows in production

>  Depends on resources on submit
machine (memory, max. open files)

>  “Tricks” can decrease resource
requirements

www.cs.wisc.edu/Condor 10

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 11

Albert learns DAGMan

> Directed Acyclic Graph Manager

>  DAGMan allows Albert to specify the
dependencies between his Condor jobs, so
DAGMan manages the jobs automatically

>  Dependency example: do not run job B
until job A has completed successfully

www.cs.wisc.edu/Condor 12

DAG definitions

>  DAGs have one or more
nodes (or vertices)

>  Dependencies are
represented by arcs (or
edges). These are arrows
that go from parent to
child)

>  No cycles!

A

B C

D

X

www.cs.wisc.edu/Condor 13

Condor and DAGs

>  Each node
represents a Condor
job (or cluster)

>  Dependencies
define the possible
order of job
execution

Job
A

Job
B

Job
C

Job
D

www.cs.wisc.edu/Condor 14

Defining a DAG to Condor

A DAG input file defines a DAG:

file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D

www.cs.wisc.edu/Condor 15

Submit description files
For node B:
file name:
b.submit
universe = vanilla
executable = B
input = B.in
output = B.out
error = B.err
log = B.log
queue

For node C:
file name:
c.submit
universe = standard
executable = C
input = C.in
output = C.out
error = C.err
log = C.log
queue

www.cs.wisc.edu/Condor 16

Jobs/clusters

>  Submit description files used in a
DAG can create multiple jobs,
but they must all be in a single cluster

>  The failure of any job means the
entire cluster fails. Other jobs are
removed.

www.cs.wisc.edu/Condor 17

Node success or failure
>  A node either succeeds

or fails
>  Based on the return

value of the job(s)
0 a success
not 0 a failure

>  This example: C fails
>  Failed nodes block

execution; DAG fails

A

B C

D

www.cs.wisc.edu/Condor 18

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 19

Submitting the DAG to
Condor

>  To submit the entire DAG, run

condor_submit_dag DagFile

>  condor_submit_dag creates a submit

description file for DAGMan, and DAGMan
itself is submitted as a Condor job (in the
scheduler universe)

>  -f(orce) option forces overwriting of
existing files

www.cs.wisc.edu/Condor 20

Controlling running DAGs

>  condor_rm
h Removes all queued node jobs, kills PRE/POST

scripts (removes entire workflow)
h Creates rescue DAG

>  condor_hold and condor_release
h Node jobs continue when DAG is held
h No new node jobs submitted
h DAGMan “catches up” when released

www.cs.wisc.edu/Condor

Monitoring a DAG run

>  condor_q –dag
>  dagman.out file
>  Node status file
>  jobstate.log file
>  Dot file

www.cs.wisc.edu/Condor 22

condor_q -dag

>  The -dag option associates DAG node
jobs with the parent DAGMan job.
h Only works for one level of DAG. Nested

DAGs do not work.
>  Shows current workflow state

www.cs.wisc.edu/Condor 23

condor_q –dag example

% condor_q -dag
-- Submitter: wenger@tonic.cs.wisc.edu : <128.105.121.53:59972> :

tonic.cs.wisc.edu
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
 82.0 wenger 4/15 11:48 0+00:01:02 R 0 19.5 condor_dagman -f

 84.0 |-B1 4/15 11:49 0+00:00:02 R 0 0.0 job_dagman_node
 85.0 |-B2 4/15 11:49 0+00:00:00 I 0 0.0 job_dagman_node
 86.0 |-B3 4/15 11:49 0+00:00:00 I 0 0.0 job_dagman_node
 87.0 |-B4 4/15 11:49 0+00:00:00 I 0 0.0 job_dagman_node
 88.0 |-B5 4/15 11:49 0+00:00:00 I 0 0.0 job_dagman_node

www.cs.wisc.edu/Condor 24

dagman.out file
›  DagFile.dagman.out
>  Verbosity controlled by the
DAGMAN_VERBOSITY configuration macro
(new in 7.5.6) and –debug on the
condor_submit_dag command line

>  Directory specified by
-outfile_dir directory

>  Mostly for debugging
>  Logs detailed workflow history

www.cs.wisc.edu/Condor 25

dagman.out contents
...
04/17/11 13:11:26 Submitting Condor Node A job(s)...
04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '='

'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a
+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.
04/17/11 13:11:27 assigned Condor ID (180224.0.0)
04/17/11 13:11:27 Just submitted 1 job this cycle...
04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)
04/17/11 13:11:27 Number of idle job procs: 1
04/17/11 13:11:27 Of 4 nodes total:
04/17/11 13:11:27 Done Pre Queued Post Ready Un-Ready Failed

04/17/11 13:11:27 === === === === === === ===
04/17/11 13:11:27 0 0 1 0 0 3 0
04/17/11 13:11:27 0 job proc(s) currently held

...

www.cs.wisc.edu/Condor 26

Node status file

>  In the DAG input file:
NODE_STATUS_FILE statusFileName
[minimumUpdateTime]

>  Not enabled by default
>  Shows a snapshot of workflow state

h  Overwritten as the workflow runs
>  New in 7.5.4

www.cs.wisc.edu/Condor 27

Node status file contents
BEGIN 1302885255 (Fri Apr 15 11:34:15 2011)
Status of nodes of DAG(s): job_dagman_node_status.dag

JOB A STATUS_DONE ()
JOB B1 STATUS_SUBMITTED (not_idle)
JOB B2 STATUS_SUBMITTED (idle)
...
DAG status: STATUS_SUBMITTED ()
Next scheduled update: 1302885258 (Fri Apr 15 11:34:18

2011)
END 1302885255 (Fri Apr 15 11:34:15 2011)

www.cs.wisc.edu/Condor 28

jobstate.log file
>  In the DAG input file:
JOBSTATE_LOG JobstateLogFileName

>  Not enabled by default
>  Meant to be machine-readable (for

Pegasus)
>  Shows workflow history
>  Basically a subset of the dagman.out file
>  New in 7.5.5

www.cs.wisc.edu/Condor 29

jobstate.log contents
1302884424 INTERNAL *** DAGMAN_STARTED 48.0 ***
1302884436 NodeA PRE_SCRIPT_STARTED - local - 1
1302884436 NodeA PRE_SCRIPT_SUCCESS - local - 1
1302884438 NodeA SUBMIT 49.0 local - 1
1302884438 NodeA SUBMIT 49.1 local - 1
1302884438 NodeA EXECUTE 49.0 local - 1
1302884438 NodeA EXECUTE 49.1 local – 1
...

www.cs.wisc.edu/Condor 30

Dot file

>  In the DAG input file:
DOT DotFile [UPDATE] [DONT-OVERWRITE]

>  To create an image
dot -Tps DotFile -o
PostScriptFile

>  Shows a snapshot of workflow state

www.cs.wisc.edu/Condor 31

Dot file example

www.cs.wisc.edu/Condor 32

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 33

DAGMan configuration
›  39 DAGMan-specific configuration

macros (see the manual…)
›  From lowest to highest precedence

h Condor configuration files
h User’s environment variables:

•  _CONDOR_macroname
h DAG-specific configuration file

(preferable)
h condor_submit_dag command line

www.cs.wisc.edu/Condor 34

Per-DAG configuration
>  In DAG input file:
CONFIG ConfigFileName
or
condor_submit_dag –config
ConfigFileName ...

>  Generally prefer CONFIG in DAG file over
condor_submit_dag -config or individual
arguments

>  Conflicting configuration specs è error
>  Syntax like any other Condor config file

www.cs.wisc.edu/Condor 35

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 36

Rescue DAGs
>  Save the state of a partially-completed

DAG
>  Created when a node fails or the
condor_dagman job is removed with
condor_rm
h DAGMan makes as much progress as possible in

the face of failed nodes
>  Automatically run when you re-run the

original DAG (unless –f) (since 7.1.0)

www.cs.wisc.edu/Condor 37

Rescue DAG naming

>  DagFile.rescue001,
DagFile.rescue002, etc.

>  Up to 100 by default (last is overwritten
once you hit the limit)

>  Newest is run automatically when you re-
submit the original DagFile

>  condor_submit_dag -dorescuefrom number
to run specific rescue DAG

www.cs.wisc.edu/Condor 38

Rescue DAGs, cont.

Run

Not run

A

B1

D

B2 B3

C1 C2 C3

www.cs.wisc.edu/Condor 39

Recovery mode

> Happens automatically when DAGMan
is held/released, or if DAGMan
crashes and restarts

> Node jobs continue
>  DAGMan recovers node job state
>  DAGMan is robust in the face of

failures

www.cs.wisc.edu/Condor 40

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 41

PRE and POST scripts
>  DAGMan allows PRE and/or POST scripts

h Not necessarily a script: any executable
h Run before (PRE) or after (POST) job
h Run on the submit machine

>  In the DAG input file:
Job A a.submit
Script PRE A before-script arguments
Script POST A after-script arguments

>  No spaces in script name or arguments

www.cs.wisc.edu/Condor

Why PRE/POST scripts?

>  Set up input
>  Check output
>  Create submit file (dynamically)
>  Force jobs to run on same machine

42

www.cs.wisc.edu/Condor 43

Script argument
variables

>  $JOB: node name
>  $JOBID: Condor ID (cluster.proc)
>  $RETRY: current retry
>  $MAX_RETRIES: max # of retries

(new in 7.5.6)
>  $RETURN: exit code of Condor/Stork

job (POST only)

www.cs.wisc.edu/Condor 44

DAG node with scripts

>  PRE script, Job, or POST
script determines node
success or failure (table in
manual gives details)

>  If PRE script fails, job and
POST script are not run

PRE script

Condor
job

POST script

www.cs.wisc.edu/Condor 45

Default node job log

> Node job submit description files are
no longer required to specify a log file
(since 7.3.2)

>  Default is DagFile.nodes.log
>  Default log may be preferable

(especially for submit file re-use)

www.cs.wisc.edu/Condor 46

Lazy submit file reading

>  Submit description files are now read
lazily (since 7.3.2)

>  Therefore, a PRE script can now write
the submit description file of its own
node job

>  Also applies to nested DAGs, which
allows some dynamic workflow
modification

www.cs.wisc.edu/Condor 47

Node retries
>  In case of transient errors
>  Before a node is marked as failed. . .

h Retry N times. In the DAG file:
Retry C 4
(to retry node C four times before calling

the node failed)
h Retry N times, unless a node returns

specific exit code. In the DAG file:
Retry C 4 UNLESS-EXIT 2

www.cs.wisc.edu/Condor 48

Node retries, continued
> Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value:

node fails

One node failure:
retry

Out of retries:
node fails

www.cs.wisc.edu/Condor 49

Node variables
>  To re-use submit files
>  In DAG input file
VARS JobName
varname="string" [varname="string"...]

>  In submit description file
$(varname)

>  varname can only contain alphanumeric
characters and underscore

>  varname cannot begin with “queue”
>  varname is not case-sensitive
>  Value cannot contain single quotes; double quotes

must be escaped

www.cs.wisc.edu/Condor 50

Throttling
>  Limit load on submit machine and pool
>  Maxjobs limits jobs in queue/running
>  Maxidle submit jobs until idle limit is hit
>  Maxpre limits PRE scripts
>  Maxpost limits POST scripts
>  All limits are per DAGMan, not global for

the pool or submit machine
>  Limits can be specified as arguments to
condor_submit_dag or in configuration

www.cs.wisc.edu/Condor 51

Node category throttles
>  Useful with different types of jobs that

cause different loads
>  In the DAG input file:
CATEGORY JobName CategoryName
MAXJOBS CategoryName MaxJobsValue

>  Applies the MaxJobsValue setting to only
jobs assigned to the given category

>  Global throttles still apply

www.cs.wisc.edu/Condor 52

Node categories example
Setup

Cleanup

Big job

Small job Small job Small job

Big job

Small job Small job Small job

Big job

Small job Small job Small job

www.cs.wisc.edu/Condor 53

Nested DAGs
>  Runs the sub-DAG as a job within the top-

level DAG
>  In the DAG input file:
SUBDAG EXTERNAL JobName DagFileName

>  Any number of levels
>  Sub-DAG nodes are like any other
>  Each sub-DAG has its own DAGMan

h Separate throttles for each sub-DAG

www.cs.wisc.edu/Condor

Why nested DAGs?

>  Scalability
>  Re-try more than one node
>  Dynamic workflow modification
>  DAG re-use

54

www.cs.wisc.edu/Condor 55

Nested DAGs diagram

www.cs.wisc.edu/Condor 56

Splices
>  Directly includes splice’s nodes within the

top-level DAG
>  In the DAG input file:
SPLICE JobName DagFileName

>  Splices cannot have PRE and POST scripts
(for now)

>  No retries
>  Splice DAGs must exist at submit time
>  Since 7.1

www.cs.wisc.edu/Condor 57

Why splices?

>  Advantages of splices over sub-DAGs
h Reduced overhead (single DAGMan

instance)
h Simplicity (e.g., single rescue DAG)
h Throttles apply across entire workflow

> Other uses
h DAG re-use

www.cs.wisc.edu/Condor 58

Splice diagram
SPLICE A

B

C

A

A

C

C

B

D

B+A

B+B B+C

B+D

www.cs.wisc.edu/Condor 59

DAG input files for splice
diagram

Splice
splice2.dag
Job A A.submit
Job B B.submit
Job C C.submit
Job D D.submit
Parent A Child B C
Parent B C Child D

Top level
splice1.dag
Job A A.submit
Splice B splice2.dag
Job C C.submit
Parent A Child B
Parent B Child C

www.cs.wisc.edu/Condor 60

DAG abort

>  In DAG input file:
ABORT-DAG-ON JobName AbortExitValue

 [RETURN DagReturnValue]

>  If node value is AbortExitValue, the entire
DAG is aborted, implying that jobs are
removed, and a rescue DAG is created.

>  Can be used for conditionally skipping nodes
(especially with sub-DAGs)

www.cs.wisc.edu/Condor 61

Node priorities
>  In the DAG input file:
PRIORITY JobName PriorityValue

>  Determines order of submission of ready
nodes

>  Does not violate or change DAG semantics
>  Mostly useful when DAG is throttled
>  Higher numerical value equals “better”

priority

www.cs.wisc.edu/Condor 62

Depth-first DAG traversal
>  Get some results more quickly
>  Possibly clean up intermediate files more quickly
>  DAGMAN_SUBMIT_DEPTH_FIRST=True

www.cs.wisc.edu/Condor 63

Multiple DAGs

>  On the command line:
condor_submit_dag dag1 dag2 ...

>  Runs multiple, independent DAGs
>  Node names modified (by DAGMan) to

avoid collisions
>  Useful: throttles apply across DAGs
>  Failure produces a single rescue DAG

www.cs.wisc.edu/Condor 64

Cross-splice node
categories

>  Prefix category name with “+”
MaxJobs +init 2
Category A +init

>  See the Splice section in the manual
for details

> New in 7.5.3

www.cs.wisc.edu/Condor 65

More information

>  There’s much more detail, as well as
examples, in the DAGMan section of
the online Condor manual.

www.cs.wisc.edu/Condor 66

Outline

>  Introduction/motivation
>  Basic DAG concepts
>  Running and monitoring a DAG
>  Configuration
>  Rescue DAGs and recovery
>  Advanced DAGMan features
>  Pegasus

www.cs.wisc.edu/Condor 67

Albert meets Pegasus-
WMS

>  What if I want to define workflows that
can flexibly take advantage of different
grid resources?

>  What if I want to register data products in
a way that makes them available to others?

>  What if I want to use the grid without a
full Condor installation?

www.cs.wisc.edu/Condor 68

Pegasus Workflow
Management System

>  A higher level on top of DAGMan
> User creates an abstract workflow
>  Pegasus maps abstract workflow to

executable workflow
>  DAGMan runs executable workflow
>  Doesn’t need full Condor (DAGMan/

schedd only)

www.cs.wisc.edu/Condor 69

Pegasus WMS

Pegasus
Workflow
Mapper

Condor
DAGMan

TeraGrid/
Open Science
Grid/campus
resources/
local machine

Transformation
Catalog

Site Catalog

Workflow Description in XML

Condor
Schedd

Submit Host

Replica Catalog

Pegasus WMS restructures and optimizes the workflow,
moves data, provides reliability

Properties

www.cs.wisc.edu/Condor 70

Pegasus features

> Workflow has inter-job dependencies
(similar to DAGMan)

>  Pegasus can map jobs to grid sites
>  Pegasus handles discovery and

registration of data products
>  Pegasus handles data transfer to/

from grid sites

www.cs.wisc.edu/Condor 71

Abstract workflow (DAX)

>  Pegasus workflow description—DAX
h Workflow “high-level language”
h Devoid of resource descriptions
h Devoid of data locations
h Refers to codes as logical

transformations
h Refers to data as logical files

www.cs.wisc.edu/Condor 72

DAX example
<!-- part 1: list of all files used (may be empty) -->
 <filename file="f.input" link="input"/>
 . . .
<!-- part 2: definition of all jobs (at least one) -->
 <job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" >
 <argument>-a top -T 6 -i <filename file=”f.input"/> -o <filename
file=”f.intermediate"/>
 </argument>
 <uses file=”f.input" link="input" register="false" transfer=”true"/>
 <uses file=”f.intermediate" link="output" register=”false" transfer=“false”>

 <!-- specify any extra executables the job needs . Optional -->
 <uses file=“keg” link=“input” register=“false” transfer=“true”

type=“executable”>
 </job>
 . . .
<!-- part 3: list of control-flow dependencies (empty for single jobs) -->
 <child ref="ID000002">
 <parent ref="ID000001"/>
 </child>
(excerpted for display)

www.cs.wisc.edu/Condor 73

Basic workflow mapping
>  Select where to run the computations

h Change task nodes into nodes with executable
descriptions

>  Select which data to access
h Add stage-in and stage-out nodes to move data

>  Add nodes that register the newly-created data
products

>  Add nodes to create an execution directory on a
remote site

>  Write out the workflow in a form understandable
by a workflow engine
h Include provenance capture steps

www.cs.wisc.edu/Condor 74

Mapping a workflow

>  To map a workflow, use the pegasus-plan
command:
pegasus-plan
-Dpegasus.user.properties=pegasus-
wms/config/properties --dir dags --
sites viz --output local --force --
nocleanup --dax pegasus-wms/dax/
montage.dax

>  Creates executable workflow

www.cs.wisc.edu/Condor 75

Pegasus workflow mapping
Original workflow: 15 compute nodes
devoid of resource assignment

Resulting workflow mapped onto
3 Grid sites:
11 compute nodes (4 reduced
based on available intermediate
data)
13 data stage-in nodes
8 inter-site data transfers
14 data stage-out nodes to long-
term storage
14 data registration nodes (data
cataloging)

4 1

8 5

10

9

13

12

15

9

4

8 3
7

10

13

12

15

www.cs.wisc.edu/Condor 76

Running a workflow
>  To run a workflow, use the pegasus-run

command:
pegasus-run
-Dpegasus.user.properties=pegasus-
wms/dags/train01/pegasus/montage/
run0001/pegasus.51773.properties
pegasus-wms/dags/train01/pegasus/
montage/run0001

>  Runs condor_submit_dag and other tools
>  Pegasus-plan gives you the pegasus-run command

you need

www.cs.wisc.edu/Condor 77

There’s much more…

> We’ve only scratched the surface of
Pegasus’s capabilities

www.cs.wisc.edu/Condor 78

Relevant Links

>  DAGMan:
www.cs.wisc.edu/condor/dagman

>  Pegasus: http://pegasus.isi.edu/
>  Makeflow:

http://nd.edu/~ccl/software/makeflow/
>  For more questions:

condor-admin@cs.wisc.edu

