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My jobs have 
dependencies… 

Can Condor help solve my 
dependency problems? 

 
Yes! 

 
Workflows are the 

answer 
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What are workflows? 

>  General: a sequence of connected 
steps 

> Our case 
h Steps are Condor jobs 
h Sequence defined at higher level 
h Controlled by a Workflow Management 

System (WMS), not just a script 
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Workflow example 
Set up 
input 

Collate 
output 

Process Process Process Process Process 
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Workflows – launch and forget 
›  A workflow can take days, weeks or even months 
›  Automates tasks user could perform manually… 

h But WMS takes care of automatically 
›  Enforces inter-job dependencies 
›  Includes features such as retries in the case of 

failures – avoids the need for user intervention 
›  The workflow itself can include error checking 
›  The result: one user action can utilize many 

resources while maintaining complex job inter-
dependencies and data flows 
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Workflow tools 

>  DAGMan: Condor’s workflow tool 
>  Pegasus: a layer on top of DAGMan 

that is grid-aware and data-aware 
> Makeflow: not covered in this talk 
> Others… 
>  This talk will focus mainly on DAGMan 
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LIGO inspiral search 
application 

>  Describe… 

Inspiral workflow application is the work of Duncan Brown, Caltech, 

Scott Koranda, UW Milwaukee, and the LSC Inspiral group  
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How big? 

> We have users running 500k-job 
workflows in production 

>  Depends on resources on submit 
machine (memory, max. open files) 

>  “Tricks” can decrease resource 
requirements 
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Albert learns DAGMan 

> Directed Acyclic Graph Manager 

>  DAGMan allows Albert to specify the 
dependencies between his Condor jobs, so 
DAGMan manages the jobs automatically 

>  Dependency example:  do not run job B 
until job A has completed successfully 
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DAG definitions 

>  DAGs have one or more 
nodes  (or vertices) 

>  Dependencies are 
represented by arcs (or 
edges). These are arrows 
that go from parent to 
child) 

>  No cycles! 

A 

B C 

D 

X 
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Condor and DAGs 

>  Each node 
represents a Condor 
job (or cluster) 

>  Dependencies 
define the possible 
order of job 
execution 

Job 
A 

Job 
B 

Job 
C 

Job 
D 
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Defining a DAG to Condor 

A  DAG input file defines a DAG: 
 
# file name: diamond.dag 
Job A a.submit 
Job B b.submit 
Job C c.submit 
Job D d.submit 
Parent A Child B C 
Parent B C Child D 

A 

B C 

D 
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Submit description files 
For node B: 
# file name:  
#    b.submit 
universe   = vanilla 
executable = B 
input      = B.in 
output     = B.out 
error      = B.err 
log        = B.log 
queue 

For node C: 
# file name: 
#    c.submit 
universe   = standard 
executable = C 
input      = C.in 
output     = C.out 
error      = C.err 
log        = C.log 
queue 
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Jobs/clusters 

>  Submit description files used in a 
DAG can create multiple jobs, 
but they must all be in a single cluster 

>  The failure of any job means the 
entire cluster fails. Other jobs are 
removed. 
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Node success or failure 
>  A node either succeeds 

or fails 
>  Based on the return  

value of the job(s) 
0 a success 
not 0 a failure 

>  This example: C fails 
>  Failed nodes block 

execution; DAG fails 

A 

B C 

D 



www.cs.wisc.edu/Condor 18 

Outline 

>  Introduction/motivation 
>  Basic DAG concepts 
>  Running and monitoring a DAG 
>  Configuration 
>  Rescue DAGs and recovery 
>  Advanced DAGMan features 
>  Pegasus 



www.cs.wisc.edu/Condor 19 

Submitting the DAG to 
Condor 

>  To submit the entire DAG, run 
 

condor_submit_dag DagFile 
 
>  condor_submit_dag  creates a submit 

description file for DAGMan, and DAGMan 
itself is submitted as a Condor job (in the 
scheduler universe) 

>  -f(orce) option forces overwriting of 
existing files 



www.cs.wisc.edu/Condor 20 

Controlling running DAGs 

>   condor_rm 
h Removes all queued node jobs, kills PRE/POST 

scripts (removes entire workflow) 
h Creates rescue DAG 

>   condor_hold and condor_release 
h Node jobs continue when DAG is held 
h No new node jobs submitted 
h DAGMan “catches up” when released 
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Monitoring a DAG run 

>   condor_q –dag 
>   dagman.out file 
>   Node status file 
>   jobstate.log file 
>   Dot file 
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condor_q -dag 

>  The -dag option associates DAG node 
jobs with the parent DAGMan job. 
h Only works for one level of DAG. Nested 

DAGs do not work. 
>  Shows current workflow state 



www.cs.wisc.edu/Condor 23 

condor_q –dag example 

% condor_q -dag 
-- Submitter: wenger@tonic.cs.wisc.edu : <128.105.121.53:59972> : 

tonic.cs.wisc.edu 
 ID      OWNER/NODENAME   SUBMITTED     RUN_TIME ST PRI SIZE CMD                
  82.0   wenger          4/15 11:48   0+00:01:02 R  0   19.5 condor_dagman -f 

  84.0    |-B1           4/15 11:49   0+00:00:02 R  0   0.0  job_dagman_node 
  85.0    |-B2           4/15 11:49   0+00:00:00 I  0   0.0  job_dagman_node 
  86.0    |-B3           4/15 11:49   0+00:00:00 I  0   0.0  job_dagman_node 
  87.0    |-B4           4/15 11:49   0+00:00:00 I  0   0.0  job_dagman_node 
  88.0    |-B5           4/15 11:49   0+00:00:00 I  0   0.0  job_dagman_node 
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dagman.out file 
›   DagFile.dagman.out 
>   Verbosity controlled by the 
DAGMAN_VERBOSITY configuration macro 
(new in 7.5.6) and –debug on the 
condor_submit_dag command line 

>   Directory specified by 
-outfile_dir directory 

>   Mostly for debugging 
>   Logs detailed workflow history 
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dagman.out contents 
... 
04/17/11 13:11:26 Submitting Condor Node A job(s)... 
04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '=' 

'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a 
+DAGParentNodeNames' '=' '"" dag_files/A2.submit 

04/17/11 13:11:27 From submit: Submitting job(s). 

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224. 
04/17/11 13:11:27       assigned Condor ID (180224.0.0) 
04/17/11 13:11:27 Just submitted 1 job this cycle... 
04/17/11 13:11:27 Currently monitoring 1 Condor log file(s) 

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0) 
04/17/11 13:11:27 Number of idle job procs: 1 
04/17/11 13:11:27 Of 4 nodes total: 
04/17/11 13:11:27  Done     Pre   Queued    Post   Ready   Un-Ready   Failed 

04/17/11 13:11:27   ===     ===      ===     ===     ===        ===      === 
04/17/11 13:11:27     0       0        1       0       0          3        0 
04/17/11 13:11:27 0 job proc(s) currently held 

... 
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Node status file 

>  In the DAG input file: 
NODE_STATUS_FILE   statusFileName 
[minimumUpdateTime] 

>  Not enabled by default 
>  Shows a snapshot of workflow state 

h  Overwritten as the workflow runs 
>  New in 7.5.4 
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Node status file contents 
BEGIN 1302885255 (Fri Apr 15 11:34:15 2011) 
Status of nodes of DAG(s): job_dagman_node_status.dag 
 
JOB A STATUS_DONE      () 
JOB B1 STATUS_SUBMITTED (not_idle) 
JOB B2 STATUS_SUBMITTED (idle) 
... 
DAG status: STATUS_SUBMITTED () 
Next scheduled update: 1302885258 (Fri Apr 15 11:34:18 

2011) 
END 1302885255 (Fri Apr 15 11:34:15 2011) 
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jobstate.log file 
>  In the DAG input file: 
JOBSTATE_LOG JobstateLogFileName 

>  Not enabled by default 
>  Meant to be machine-readable (for 

Pegasus) 
>  Shows workflow history 
>  Basically a subset of the dagman.out file 
>  New in 7.5.5 
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jobstate.log contents 
1302884424 INTERNAL *** DAGMAN_STARTED 48.0 *** 
1302884436 NodeA PRE_SCRIPT_STARTED - local - 1 
1302884436 NodeA PRE_SCRIPT_SUCCESS - local - 1 
1302884438 NodeA SUBMIT 49.0 local - 1 
1302884438 NodeA SUBMIT 49.1 local - 1 
1302884438 NodeA EXECUTE 49.0 local - 1 
1302884438 NodeA EXECUTE 49.1 local – 1 
... 
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Dot file 

>  In the DAG input file: 
DOT DotFile [UPDATE] [DONT-OVERWRITE]  

>  To create an image 
dot -Tps DotFile -o 
PostScriptFile 

>  Shows a snapshot of workflow state 
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Dot file example 
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DAGMan configuration 
›  39 DAGMan-specific configuration 

macros (see the manual…) 
›  From lowest to highest precedence 

h Condor configuration files 
h User’s environment variables: 

•  _CONDOR_macroname 
h DAG-specific configuration file 

(preferable) 
h condor_submit_dag command line 
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Per-DAG configuration 
>  In DAG input file: 
CONFIG ConfigFileName  
or  
condor_submit_dag –config 
ConfigFileName ... 

>  Generally prefer CONFIG in DAG file over 
condor_submit_dag -config or individual 
arguments 

>  Conflicting configuration specs è error 
>  Syntax like any other Condor config file 
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Rescue DAGs 
>  Save the state of a partially-completed 

DAG 
>  Created when a node fails or the 
condor_dagman job is removed with 
condor_rm 
h DAGMan makes as much progress as possible in 

the face of failed nodes 
>  Automatically run when you re-run the 

original DAG (unless –f) (since 7.1.0) 
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Rescue DAG naming 

>   DagFile.rescue001, 
DagFile.rescue002, etc. 

>   Up to 100 by default (last is overwritten 
once you hit the limit) 

>   Newest is run automatically when you re-
submit the original DagFile 

>   condor_submit_dag -dorescuefrom number 
to run specific rescue DAG 
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Rescue DAGs, cont. 

Run 

Not run 

A 

B1 

D 

B2 B3 

C1 C2 C3 
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Recovery mode 

> Happens automatically when DAGMan 
is held/released, or if DAGMan 
crashes and restarts 

> Node jobs continue 
>  DAGMan recovers node job state 
>  DAGMan is robust in the face of 

failures 
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PRE and POST scripts 
>  DAGMan allows PRE and/or POST scripts 

h Not necessarily a script: any executable 
h Run before (PRE) or after (POST) job 
h Run on the submit machine 

>  In the DAG input file: 
Job A a.submit 
Script PRE A before-script arguments 
Script POST A after-script arguments 

>  No spaces in script name or arguments 
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Why PRE/POST scripts? 

>  Set up input 
>  Check output 
>  Create submit file (dynamically) 
>  Force jobs to run on same machine 

42 
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Script argument 
variables 

>   $JOB: node name 
>   $JOBID: Condor ID (cluster.proc) 
>   $RETRY: current retry 
>   $MAX_RETRIES: max # of retries 

(new in 7.5.6) 
>   $RETURN: exit code of Condor/Stork 

job (POST only) 
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DAG node with scripts 

>  PRE script, Job, or POST 
script determines node 
success or failure (table in 
manual gives details) 

>  If PRE script fails, job and 
POST script are not run 

PRE script 

Condor 
job 

POST script 
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Default node job log 

> Node job submit description files are 
no longer required to specify a log file 
(since 7.3.2) 

>  Default is DagFile.nodes.log 
>  Default log may be preferable 

(especially for submit file re-use) 
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Lazy submit file reading 

>  Submit description files are now read 
lazily (since 7.3.2) 

>  Therefore, a PRE script can now write 
the submit description file of its own 
node job 

>  Also applies to nested DAGs, which 
allows some dynamic workflow 
modification 
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Node retries 
>  In case of transient errors 
>  Before a node is marked as failed. . . 

h Retry N times.  In the DAG file: 
Retry C 4 
(to retry node C four times before calling 

the node failed) 
h Retry N times, unless a node returns 

specific exit code. In the DAG file: 
Retry C 4 UNLESS-EXIT 2 
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Node retries, continued 
> Node is retried as a whole 

Job 

PRE 

POST 

Node 

Success 
Unless-exit value: 

node fails 

One node failure: 
retry 

Out of retries: 
node fails 
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Node variables 
>   To re-use submit files 
>   In DAG input file 
VARS JobName 
varname="string" [varname="string"... ] 

>   In submit description file 
$(varname)  

>   varname can only contain alphanumeric 
characters and underscore 

>   varname cannot begin with “queue” 
>   varname is not case-sensitive 
>   Value cannot contain single quotes; double quotes 

must be escaped 
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Throttling 
>   Limit load on submit machine and pool 
>   Maxjobs  limits jobs in queue/running 
>   Maxidle  submit jobs until idle limit is hit 
>   Maxpre  limits PRE scripts 
>   Maxpost  limits POST scripts 
>   All limits are per DAGMan, not global for 

the pool or submit machine 
>   Limits can be specified as arguments to 
condor_submit_dag or in configuration 
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Node category throttles 
>  Useful with different types of jobs that 

cause different loads 
>  In the DAG input file: 
CATEGORY JobName CategoryName 
MAXJOBS CategoryName MaxJobsValue 

>  Applies the MaxJobsValue setting to only 
jobs assigned to the given category 

>  Global throttles still apply 
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Node categories example 
Setup 

Cleanup 

Big job 

Small job Small job Small job 

Big job 

Small job Small job Small job 

Big job 

Small job Small job Small job 
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Nested DAGs 
>  Runs the sub-DAG as a job within the top-

level DAG 
>  In the DAG input file: 
SUBDAG EXTERNAL JobName DagFileName 

>  Any number of levels 
>  Sub-DAG nodes are like any other 
>  Each sub-DAG has its own DAGMan 

h Separate throttles for each sub-DAG 
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Why nested DAGs? 

>  Scalability 
>  Re-try more than one node 
>  Dynamic workflow modification 
>  DAG re-use 

54 
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Nested DAGs diagram 
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Splices 
>  Directly includes splice’s nodes within the 

top-level DAG 
>  In the DAG input file: 
SPLICE JobName DagFileName 

>  Splices cannot have PRE and POST scripts 
(for now) 

>  No retries 
>  Splice DAGs must exist at submit time 
>  Since 7.1 
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Why splices? 

>  Advantages of splices over sub-DAGs 
h Reduced overhead (single DAGMan 

instance) 
h Simplicity (e.g., single rescue DAG) 
h Throttles apply across entire workflow 

> Other uses 
h DAG re-use 
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Splice diagram 
SPLICE A 

B 

C 

A 

A 

C 

C 

B 

D 

B+A 

B+B B+C 

B+D 
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DAG input files for splice 
diagram 

Splice 
# splice2.dag 
Job A A.submit 
Job B B.submit 
Job C C.submit 
Job D D.submit  
Parent A Child B C 
Parent B C Child D 

Top level 
# splice1.dag 
Job A A.submit 
Splice B splice2.dag 
Job C C.submit 
Parent A Child B 
Parent B Child C 
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DAG abort 

>  In DAG input file: 
ABORT-DAG-ON JobName AbortExitValue  

 [RETURN DagReturnValue]  

>  If node value is AbortExitValue, the entire 
DAG is aborted, implying that jobs are 
removed, and a rescue DAG is created. 

>  Can be used for conditionally skipping nodes 
(especially with sub-DAGs) 
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Node priorities 
>  In the DAG input file: 
PRIORITY JobName PriorityValue 

>  Determines order of submission of ready 
nodes 

>  Does not violate or change DAG semantics 
>  Mostly useful when DAG is throttled 
>  Higher numerical value equals “better” 

priority 
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Depth-first DAG traversal 
>   Get some results more quickly 
>   Possibly clean up intermediate files more quickly 
>   DAGMAN_SUBMIT_DEPTH_FIRST=True 
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Multiple DAGs 

>  On the command line: 
condor_submit_dag dag1 dag2 ... 

>  Runs multiple, independent DAGs 
>  Node names modified (by DAGMan) to 

avoid collisions 
>  Useful:  throttles apply across DAGs 
>  Failure produces a single rescue DAG 
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Cross-splice node 
categories 

>  Prefix category name with “+” 
MaxJobs +init 2 
Category A +init 

>  See the Splice section in the manual 
for details 

> New in 7.5.3 
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More information 

>  There’s much more detail, as well as 
examples, in the DAGMan section of 
the online Condor manual. 
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Albert meets Pegasus-
WMS 

>  What if I want to define workflows that 
can flexibly take advantage of different 
grid resources? 

>  What if I want to register data products in 
a way that makes them available to others? 

>  What if I want to use the grid without a 
full Condor installation? 



www.cs.wisc.edu/Condor 68 

Pegasus Workflow 
Management System 

>  A higher level on top of DAGMan 
> User creates an abstract workflow 
>  Pegasus maps abstract workflow to 

executable workflow 
>  DAGMan runs executable workflow 
>  Doesn’t need full Condor (DAGMan/

schedd only) 
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Pegasus WMS 

Pegasus  
Workflow  
Mapper 

Condor 
DAGMan 

TeraGrid/ 
Open Science 
Grid/campus 
resources/ 
local machine 

Transformation  
Catalog 

Site Catalog 

Workflow Description in XML 

Condor  
Schedd 

Submit Host 

Replica Catalog 

Pegasus WMS restructures and optimizes the workflow, 
moves data, provides reliability 

Properties 
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Pegasus features 

> Workflow has inter-job dependencies 
(similar to DAGMan) 

>  Pegasus can map jobs to grid sites 
>  Pegasus handles discovery and 

registration of data products 
>  Pegasus handles data transfer to/

from grid sites 
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Abstract workflow (DAX) 

>  Pegasus workflow description—DAX 
h Workflow “high-level language” 
h Devoid of resource descriptions 
h Devoid of data locations 
h Refers to codes as logical 

transformations 
h Refers to data as logical files 
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DAX example 
<!-- part 1: list of all files used (may be empty) --> 
  <filename file="f.input" link="input"/> 
  . . . 
<!-- part 2: definition of all jobs (at least one) --> 
  <job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" > 
   <argument>-a top -T 6  -i <filename file=”f.input"/>  -o <filename 
file=”f.intermediate"/> 
   </argument> 
   <uses file=”f.input" link="input" register="false" transfer=”true"/> 
   <uses file=”f.intermediate" link="output" register=”false" transfer=“false”> 

 <!-- specify any extra executables the job needs . Optional  --> 
 <uses file=“keg” link=“input” register=“false” transfer=“true” 

type=“executable”> 
  </job>  
 . . . 
<!-- part 3: list of control-flow dependencies (empty for single jobs) --> 
 <child ref="ID000002"> 
    <parent ref="ID000001"/> 
  </child> 
(excerpted for display) 



www.cs.wisc.edu/Condor 73 

Basic workflow mapping 
>  Select where to run the computations 

h Change task nodes into nodes with executable 
descriptions 

>  Select which data to access 
h Add stage-in and stage-out nodes to move data 

>  Add nodes that register the newly-created data 
products 

>  Add nodes to create an execution directory on a 
remote site 

>  Write out the workflow in a form understandable 
by a workflow engine 
h Include provenance capture steps 
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Mapping a workflow 

>  To map a workflow, use the pegasus-plan 
command: 
pegasus-plan  
-Dpegasus.user.properties=pegasus-
wms/config/properties --dir dags --
sites viz --output local --force --
nocleanup --dax pegasus-wms/dax/
montage.dax 

>  Creates executable workflow 
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Pegasus workflow mapping 
Original workflow:  15 compute nodes 
devoid of resource assignment 

Resulting workflow mapped onto 
3 Grid sites: 
11 compute nodes (4 reduced 
based on available intermediate 
data)  
13 data stage-in nodes 
8 inter-site data transfers 
14 data stage-out nodes to long-
term storage 
14 data registration nodes (data 
cataloging) 

4 1 

8 5 

10 

9 

13 

12 

15 

9 

4 

8 3 
7 

10 

13 

12 

15 



www.cs.wisc.edu/Condor 76 

Running a workflow 
>  To run a workflow, use the pegasus-run 

command: 
pegasus-run  
-Dpegasus.user.properties=pegasus-
wms/dags/train01/pegasus/montage/
run0001/pegasus.51773.properties  
pegasus-wms/dags/train01/pegasus/
montage/run0001 

>  Runs condor_submit_dag and other tools 
>  Pegasus-plan gives you the pegasus-run command 

you need 
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There’s much more… 

> We’ve only scratched the surface of 
Pegasus’s capabilities 
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Relevant Links 

>  DAGMan: 
www.cs.wisc.edu/condor/dagman 

>  Pegasus: http://pegasus.isi.edu/ 
>  Makeflow: 

http://nd.edu/~ccl/software/makeflow/ 
>  For more questions:  

condor-admin@cs.wisc.edu 


