

Condor Project

Computer Sciences Department
University of Wisconsin-Madison

Using Condor
An Introduction

Condor Week 2011

www.cs.wisc.edu/Condor 2

The Condor Project (Established ‘85)
› Research and Development in the Distributed
High Throughput Computing field
› Our team of ~35 faculty, full time staff, and
students
h face software engineering challenges in a

distributed UNIX/Linux/NT environment.
h are involved in national and international grid

collaborations.
h actively interact with academic and commercial

entities and users.
h maintain and support large, distributed, production

environments.
h educate and train students.

www.cs.wisc.edu/Condor 3

The Condor Team

www.cs.wisc.edu/Condor 4

Some Free Software produced
by the Condor Project

›  Condor System
›  VDT
›  Metronome
›  ClassAd Library
And others… all as Open Source
›  Licensed under the Apache License,

Version 2.0
›  OSI Approved
›  Free as in Beer, Free as in Speech

›  DAGMan
›  CCB
›  Master Worker (MW)

www.cs.wisc.edu/Condor 5

High-Throughput Computing

›  Allows for many computational tasks to be
done over a long period of time

›  Is concerned largely with the number of
compute resources that are available to
people who wish to use the system

›  A very useful system for researchers and
other users who are more concerned with
the number of computations they can do
over long spans of time, than they are with
short-burst computations

www.cs.wisc.edu/Condor 6

Condor

www.cs.wisc.edu/Condor 7

What is Condor?

›  Classic High-Throughput Computing
system

› An integral part of many computational
grids around the world

www.cs.wisc.edu/Condor 8

Full featured system
›  Flexible scheduling policy engine via

ClassAds
h Preemption, suspension, requirements,

preferences, groups, quotas, settable fair-share,
system hold…

›  Facilities to manage both dedicated CPUs
(clusters) and non-dedicated resources
(desktops)

›  Transparent Checkpoint/Migration for many
types of serial jobs

›  No shared file system required
›  Federate clusters with a wide array of

Grid Middleware

www.cs.wisc.edu/Condor 9

More features
›  Workflow management (inter-dependencies)
›  Support for many job types: serial, parallel,

etc.
›  Fault-tolerant: can survive crashes, network

outages, any single point of failure.
›  Development APIs: via SOAP / web services,

DRMAA (C), Perl package, GAHP, flexible
command-line tools, MW

›  Supported platforms:
h Linux on i386 / X86-64
h Windows XP / Vista / 7
h MacOS X

www.cs.wisc.edu/Condor 10

The Problem
Our esteemed
scientist, while

visiting
Madison, needs
to run a small *

simulation.
* Depends on your definition of “small”

www.cs.wisc.edu/Condor 11

Einstein's Simulation
Simulate the
evolution of
the cosmos,
with various
properties.

www.cs.wisc.edu/Condor 12

The Simulation Details
Varying values for each of:
h  G (the gravitational constant): 100 values

h  Rµν (the cosmological constant): 100 values
h  c (the speed of light): 100 values

100 × 100 × 100 = 1,000,000 jobs

www.cs.wisc.edu/Condor 13

Running the Simulation
Each point (job) within the simulation:
h Requires up to 4GB of RAM
h Requires 20MB of input
h Requires 2 – 500 hours of computing time
h Produces up to 10GB of output

Estimated total:
h 15,000,000 hours!
h 1,700 compute YEARS
h 10 Petabytes of output

www.cs.wisc.edu/Condor 14

NSF didn't fund the
requested Blue Gene

www.cs.wisc.edu/Condor 15

While sharing a
beverage with some
colleagues, Carl asks
“Have you tried
Condor? It’s free,
available for you to
use, and you can use
our CHTC pool.
Condor has been used
to run billions and
billions of jobs.”

www.cs.wisc.edu/Condor 16

CHTC
Center for High Throughput Computing

h Approved in August 2006
h Numerous resources at its disposal to

keep up with the computational needs of
UW-Madison

h These resources are being funded by:
• National Institute of Health (NIH)
•  Department of Energy (DOE)
• National Science Foundation (NSF)
•  Various grants from the University itself

www.cs.wisc.edu/Condor 17

B240
One of the CTHC Clusters

www.cs.wisc.edu/Condor 18

But... will my jobs be safe?

› No worries!!
h Jobs are queued in a safe way

• More details later
h Condor will make sure that your jobs run,

return output, etc.
•  You can even specify what defines “OK”

›  Like money in the (FDIC insured) bank

www.cs.wisc.edu/Condor 19

Condor will ...
›  Keep an eye on your jobs and will keep you

posted on their progress
›  Implement your policy on the execution

order of the jobs
›  Log your job's activities
›  Add fault tolerance to your jobs
›  Implement your policy as to when the jobs

can run on your workstation

www.cs.wisc.edu/Condor 20

Condor Doesn’t Play Dice
with My Universes!

www.cs.wisc.edu/Condor 21

Definitions
›  Job

h The Condor representation of your work
h Condor’s quanta of work
h Like a Unix process
h Can be an element of a workflow

›  ClassAd
h Condor’s internal data representation

›  Machine or Resource
h The Condor representation of computers that

can do the processing

www.cs.wisc.edu/Condor 22

More Definitions
›  Match Making

h Associating a job with a machine resource
›  Central Manager

h Central repository for the whole pool
h Does match making

› Submit Host
h The computer from which you submit your jobs

to Condor
› Execute Host

h The computer that actually runs your job

www.cs.wisc.edu/Condor 23

Jobs Have Wants & Needs

›  Jobs state their requirements and
preferences:
h Requirements:

•  I require a Linux x86-64 platform
h Rank (Preferences):

•  I prefer the machine with the most memory
•  I prefer a machine in the chemistry

department

www.cs.wisc.edu/Condor 24

Machines Do Too!
› Machines specify:

h Requirements:
•  Require that jobs run only when there is no

keyboard activity
• Never run jobs belonging to Dr. Heisenberg

h Rank (Preferences):
•  I prefer to run Albert’s jobs

h Custom Attributes:
•  I am a machine in the physics department

www.cs.wisc.edu/Condor 25

Condor ClassAds

www.cs.wisc.edu/Condor 26

What is a ClassAd?
›  Condor’s internal data representation

h Similar to a classified ad in a paper
•  Their namesake

h Represent an object & its attributes
•  Usually many attributes

h Can also describe what an object
matches with

www.cs.wisc.edu/Condor 27

ClassAd Types

›  Condor has many types of ClassAds
h A Job ClassAd represents a job to Condor
h A Machine ClassAd represents the

various compute resources within the
Condor pool

h Other ClassAds represent other pieces
of the Condor pool

www.cs.wisc.edu/Condor 28

ClassAds Explained
›  ClassAds can contain a lot of details

h The job’s executable is "cosmos"
h The machine’s load average is 5.6

›  ClassAds can specify requirements
h My job requires a machine with Linux

›  ClassAds can specify rank
h This machine prefers to run jobs from

the physics group

www.cs.wisc.edu/Condor 29

ClassAd Structure
›  ClassAds are:

h semi-structured
h user-extensible
h schema-free

›  ClassAd contents:
h Attribute = Value
or
h Attribute = Expression

www.cs.wisc.edu/Condor 30

The Pet Exchange
 Pet Ad

 Type = "Dog"
 Color = "Brown"
 Price = 75
 Sex = "Male"
 AgeWeeks = 8
 Breed = "Saint Bernard"
 Size = "Very Large"
 Weight = 30
 Name = "Ralph"

 Buyer Ad
 . . .
 Requirements =
 (Type == "Dog") &&
 (Price <= 100) &&
 (Size == "Large" ||
 Size == "Very Large")
 Rank =
 (Breed == "Saint Bernard")
 . . .

www.cs.wisc.edu/Condor 31

The Magic of Matchmaking
›  The Condor match maker matches Job Ads

with Machine Ads, taking into account:
h Requirements

•  Enforces both machine and job requirements
expressions

h Preferences
•  Considers both job and machine rank expressions

h Priorities
•  Takes into account user and group priorities

www.cs.wisc.edu/Condor 32

Back to Albert’s simulation...

www.cs.wisc.edu/Condor 33

Getting Started:
1.  Get access to submit host
2.  Make sure your program runs stand-alone
3.  Choose a universe for your job
4.  Make your job batch-ready

h  Includes making your data available to your job
5.  Create a submit description file
6.  Run condor_submit to put the job(s) in

the queue
7.  Relax while Condor manages and watches

over your job(s) for you

www.cs.wisc.edu/Condor 34

1.  Access to CHTC
(UW Specific)

›  Send email to chtc@cs.wisc.edu
›  An account will be set up for you
› ssh into our submit head node:

h From Unix / Linux:
• ssh einstein@submit.chtc.wisc.edu

h From Windows:
•  Install Putty or similar SSH client
•  Use Putty to ssh into submit.chtc.wisc.edu

www.cs.wisc.edu/Condor 35

If You’re not at UW…

› Work with your Condor Administrator
to get access

›  Login to your Condor submit host…

www.cs.wisc.edu/Condor

2. Make Sure Your Program
Runs stand-alone

›  Before you try to submit your
program to Condor, you should verify
that it runs on it’s own.

›  Log into the submit node, and try to
run your program (by hand) there.

›  If it doesn’t work here, it’s not
going to work under Condor!

www.cs.wisc.edu/Condor 37

3. Choose the Universe
›  Controls how Condor

handles jobs
›  Condor's many

universes include:
h vanilla
h standard
h grid
h java
h parallel
h vm

www.cs.wisc.edu/Condor 38

 Using the Vanilla Universe

•  Allows running almost
any “serial” job

•  Provides automatic
file transfer, etc.

•  Like vanilla ice cream
– Can be used in just

about any situation

www.cs.wisc.edu/Condor 39

4. Make the job
batch-ready

›  Must be able to run in
the background

›  No interactive input
›  No GUI/window clicks

h We don't need no
stinkin' mouse!

›  No music ;^)

www.cs.wisc.edu/Condor 40

Batch-Ready:
Standard Input & Output

›  Job can still use STDIN, STDOUT, and
STDERR (the keyboard and the screen),
but files are used for these instead of
the actual devices

› Similar to Unix shell:
$./myprogram <input.txt >output.txt

www.cs.wisc.edu/Condor 41

Make your Data Available

›  Condor can
h Transfer data files to your job
h Transfer results files back from your job

›  You need to place your data files in a
place where Condor can access them

www.cs.wisc.edu/Condor 42

5. Create a
Submit Description File

›  Most people just call it a “submit file”
›  A plain ASCII text file
›  Condor does not care about file extensions

h Many use .sub or .submit as suffixes
›  Tells Condor about the job:

h Executable to run
h The Job’s Universe
h Input, output and error files to use
h Command-line arguments, environment variables
h Job requirements and/or rank expressions (more on this

later)
›  Can describe many jobs at once (a cluster), each with

different input, arguments, output, etc.

www.cs.wisc.edu/Condor 43

Input, output & error files
›  Controlled by the submit file settings
›  Read job’s standard input from in_file:

h Input = in_file.txt
h Shell: $ program < in_file.txt

›  Write job’s standard output to out_file:
h Output = out_file.txt
h Shell: $ program > out_file.txt

›  Write job’s standard error to error_file:
h Error = error_file.txt
h Shell: $ program 2> error_file.txt

www.cs.wisc.edu/Condor 44

Simple Submit Description File
simple submit description file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!

Universe = vanilla
Executable = cosmos Job's executable
Input = cosmos.in Job's STDIN
Output = cosmos.out Job's STDOUT
Log = cosmos.log Log the job's activities
Queue Put the job in the queue

www.cs.wisc.edu/Condor 45

Logging the Job's Activities

›  Creates a log of job events
›  In the submit description file:

log = cosmos.log

›  The Life Story of a Job
h Shows all events in the life of a job

› Always have a log file

www.cs.wisc.edu/Condor 46

Sample Job Log
000 (0101.000.000) 05/25 19:10:03 Job submitted from host:
<128.105.146.14:1816>

...

001 (0101.000.000) 05/25 19:12:17 Job executing on host:
<128.105.146.14:1026>

...

005 (0101.000.000) 05/25 19:13:06 Job terminated.

 (1) Normal termination (return value 0)

...

www.cs.wisc.edu/Condor 47

6. Submit the Job to Condor
›  Run condor_submit:

h Provide the name of the submit file :

› condor_submit:
h Parses the submit file, checks for errors
h Creates one or more job ClassAd(s) that

describes your job(s)
h Hands the job ClassAd(s) off to the

Condor scheduler daemon

$ condor_submit cosmos.sub

www.cs.wisc.edu/Condor 48

MyType = "Job"
TargetType = "Machine"
ClusterId = 1
ProcId = 0
IsPhysics = True
Owner = "einstein"
Cmd = "cosmos"
Requirements = (Arch == "INTEL")
.
.
.

The Job ClassAd

String

Integer
Boolean

Boolean
Expression

www.cs.wisc.edu/Condor 49

[einstein@submit ~]$ condor_submit cosmos.sub
Submitting job(s).
1 job(s) submitted to cluster 100.
[einstein@submit ~]$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> : submit.chtc.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 sagan 7/22 14:19 172+21:28:36 H 0 22.0 checkprogress.cron
2.0 heisenberg 1/13 13:59 0+00:00:00 I 0 0.0 env
3.0 hawking 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
4.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
5.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
6.0 hawking 1/15 19:34 0+00:00:00 H 0 0.0 script.sh
...
96.0 bohr 4/5 13:46 0+00:00:00 I 0 0.0 c2b_dops.sh
97.0 bohr 4/5 13:46 0+00:00:00 I 0 0.0 c2b_dops.sh
98.0 bohr 4/5 13:52 0+00:00:00 I 0 0.0 c2b_dopc.sh
99.0 bohr 4/5 13:52 0+00:00:00 I 0 0.0 c2b_dopc.sh
100.0 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos

557 jobs; 402 idle, 145 running, 10 held

Submitting The Job

www.cs.wisc.edu/Condor 50

The Job Queue

› condor_submit sends the job’s
ClassAd(s) to the schedd (a daemon)

›  The schedd (more details later):
h Manages the local job queue
h Stores the job in the job queue

•  Atomic operation, two-phase commit
•  “Like money in the (FDIC insured) bank”

›  View the queue with condor_q

www.cs.wisc.edu/Condor

Baby Steps
›  Wait for your one job to complete

h It won’t run any faster than it does running it
by hand

›  Verify that your job performed as
expected:
h Look at the standard output and error files
h Examine any other results files

›  Problems?
h Look in the job log for hints

www.cs.wisc.edu/Condor 52

submit.chtc.wisc.edu

CHTC Condor Pool

CHTC
submit

Einstein’s new job

Other user’s jobs

Condor
schedd

$ condor_submit

Job Ad

cosmos.sub

[einstein@submit ~]$ cm

Job
Queue

www.cs.wisc.edu/Condor

File Transfer
›  If your job needs data files, you’ll

need to have Condor transfer them
for you

›  Likewise, Condor can transfer results
files back for you

›  You need to place your data files in a
place where Condor can access them

›  Sounds Great! What do I need to do?

www.cs.wisc.edu/Condor 54

Specify File Transfer Lists
In your submit file:
› Transfer_Input_Files

h List of files for Condor to transfer from
the submit machine to the execute
machine

› Transfer_Output_Files
h List of files for Condor to transfer back

from the execute machine to the submit
machine

h If not specified, Condor will transfer
back all “new” files in the execute
directory

www.cs.wisc.edu/Condor 55

Condor File Transfer Controls
Should_Transfer_Files

h YES: Always transfer files to execution site
h NO: Always rely on a shared file system
h IF_NEEDED: Condor will automatically transfer

the files, if the submit and execute machine
are not in the same FileSystemDomain

•  Translation: Use shared file system if available
When_To_Transfer_Output

h ON_EXIT: Transfer the job's output files back
to the submitting machine only when the job
completes

h ON_EXIT_OR_EVICT: Like above, but also
when the job is evicted

www.cs.wisc.edu/Condor 56

File Transfer Example

Example using file transfer
Universe = vanilla
Executable = cosmos
Log = cosmos.log
ShouldTransferFiles = IF_NEEDED
Transfer_input_files = cosmos.dat
Transfer_output_files = results.dat
When_To_Transfer_Output = ON_EXIT
Queue

www.cs.wisc.edu/Condor

Transfer Time
›  File transfer (both input and output)

requires network bandwidth and time
h Limit the amount of I/O Condor needs

to do for your job
h If your produces 1TB of output, but you

only need 10M of it, only bring back the
10M that you need!

h Less data means shorter data transfer
times

57

www.cs.wisc.edu/Condor 58

Command Line Arguments

Example with command line arguments
Universe = vanilla
Executable = cosmos
Arguments = -c 299792458 –G 6.67300e-112
log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Queue

In the submit file:
arguments = -arg1 -arg2 foo

www.cs.wisc.edu/Condor 59

InitialDir
›  Identifies a directory for file input and output.
›  Also provides a directory (on the submit machine) for

the user log, when a full path is not specified.
›  Note: Executable is not relative to InitialDir
Example with InitialDir
Universe = vanilla
InitialDir = /home/einstein/cosmos/run
Executable = cosmos
Log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err

Transfer_Input_Files=cosmos.dat
Arguments = -f cosmos.dat
Queue

Is Relative to InitialDir

NOT Relative to InitialDir

www.cs.wisc.edu/Condor 60

Need More Feedback?
•  Condor sends email

about job events to the
submitting user

•  Specify one of these in
the submit description
file:

Default
Notification = complete
Notification = never
Notification = error
Notification = always

www.cs.wisc.edu/Condor 61

Jobs, Clusters, and Processes
›  If the submit description file describes multiple jobs,

it is called a cluster
›  Each cluster has a cluster number, where the cluster

number is unique to the job queue on a machine
›  Each individual job within a cluster is called a process,

and process numbers always start at zero
›  A Condor Job ID is the cluster number, a period, and

the process number (i.e. 2.1)
h A cluster can have a single process

•  Job ID = 20.0 ·Cluster 20, process 0
h Or, a cluster can have more than one process

•  Job IDs: 21.0, 21.1, 21.2 ·Cluster 21, process 0, 1, 2

www.cs.wisc.edu/Condor 62

Submit File for a Cluster
Example submit file for a cluster of 2 jobs
with separate input, output, error and log files
Universe = vanilla
Executable = cosmos

Arguments = -f cosmos_0.dat
log = cosmos_0.log
Input = cosmos_0.in
Output = cosmos_0.out
Error = cosmos_0.err
Queue ·Job 102.0 (cluster 102, process 0)

Arguments = -f cosmos_1.dat
log = cosmos_1.log
Input = cosmos_1.in
Output = cosmos_1.out
Error = cosmos_1.err
Queue ·Job 102.1 (cluster 102, process 1)

www.cs.wisc.edu/Condor 63

[einstein@submit ~]$ condor_submit cosmos.sub
Submitting job(s).
2 job(s) submitted to cluster 102.
[einstein@submit ~]$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> : submit.chtc.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 sagan 7/22 14:19 172+21:28:36 H 0 22.0 checkprogress.cron
2.0 heisenberg 1/13 13:59 0+00:00:00 I 0 0.0 env
3.0 hawking 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
4.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
5.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
6.0 hawking 1/15 19:34 0+00:00:00 H 0 0.0 script.sh
...
102.0 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos –f cosmos.dat
102.1 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos –f cosmos.dat

557 jobs; 402 idle, 145 running, 10 held

[einstein@submit ~]$

Submitting a Couple Jobs

www.cs.wisc.edu/Condor

One Step at a Time!
›  Before trying to submit a large batch

of jobs:
h Submit a single job

•  (See “Baby Steps” slide)
•  Verify that it works

h Then, submit a small number (5 - 10)
h Verify that they all work as expected

› Now, you’re ready to move on to
bigger & better..

www.cs.wisc.edu/Condor 65

Back to Albert’s
simulation…

www.cs.wisc.edu/Condor 66

Files for the 1,000,000 jobs...
› We could put all input, output, error &

log files in the one directory
h One of each type for each job
h 4,000,000+ files (4 files × 1,000,000 jobs)
h Submit description file: 6,000,000+ lines,

~128M
h Difficult (at best) to sort through

›  Better: create a subdirectory for each
run
h Take advantage of InitialDir directive

www.cs.wisc.edu/Condor 67

Organization for big runs
›  Create subdirectories for each run

h run_0, run_1, … run_999999
›  Create input files in each of these

h run_0/(cosmos.in,cosmos.dat)
h run_1/(cosmos.in,cosmos.dat)
h …
h run_999999/(cosmos.in,cosmos.dat)

›  The output, error & log files for each job
will be created by Condor from the job’s
output

›  Can easily be done with a simple Python
program (or even Perl)

www.cs.wisc.edu/Condor 68

More Data Files
› We’ll create a new data file, and store

the values of G, c & Rμν for each run to
a data file
h I named this new file “cosmos.in”
h Each run directory contains a unique
cosmos.in file
•  Probably created by our Python program

›  The common cosmos.dat file could be
shared by all runs
h Can be symbolic links to a common file

www.cs.wisc.edu/Condor 69

cosmos.in files
These cosmos.in files can easily be

generated programmatically using Python
or Perl
run_0/cosmos.in
c = 299792408
G = 6.67300e-112
R = 10.00e−29

run_1/cosmos.in
c = 299792409
G = 6.67300e-112
R = 10.00e−29

run_999999/cosmos.in
c = 299792508
G = 6.67300e-100
R = 10.50e−29

…

run_999998/cosmos.in
c = 299792508
G = 6.67300e-100
R = 10.49e−29

www.cs.wisc.edu/Condor 70

Einstein’s simulation directory
cosmos

cosmos.sub

cosmos.dat

run_999999

run_0

User or
script

creates
black files

Condor
creates

purple files
for you

cosmos.in
cosmos.dat ·(symlink)

cosmos.in
cosmos.dat ·(symlink)

cosmos.out

cosmos.err

cosmos.log

cosmos.out

cosmos.err

cosmos.log

www.cs.wisc.edu/Condor 71

Submit File
Cluster of 1,000,000 jobs with
different directories
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Output = cosmos.out
Input = cosmos.in
Arguments = –f cosmos.dat
Transfer_Input_Files = cosmos.dat
...

InitialDir = run_0 ·Log, in, out & error files -> run_0
Queue ·Job 103.0 (Cluster 103, Process 0)

InitialDir = run_1 ·Log, in, out & error files -> run_1
Queue ·Job 103.1 (Cluster 103, Process 1)

·Do this 999,998 more times…………

www.cs.wisc.edu/Condor 72

› With this submit file, we can now
submit a single cluster with 1,000,000
processes in it

› All the input/output files are organized
within directories

›  The submit description file is quite
large, though
h 2,000,000+ lines, ~32M

› Surely, there must be a better way
h I am serious… and don’t call me Shirley

1,000,000 Proc Cluster!!

www.cs.wisc.edu/Condor 73

The Better Way
›  Queue all 1,000,000 processes with a single

command:
Queue 1000000

›  Condor provides
h $(Process) will be expanded to the process

number for each job in the cluster
•  0, 1, … 999999

www.cs.wisc.edu/Condor 74

Using $(Process)
›  The initial directory for each job can be

specified using $(Process)
h InitialDir = run_$(Process)
h Condor will expand these directories to:

• run_0, run_1, … run_999999
›  Similarly, arguments can be variable

h Arguments = -n $(Process)
h Condor will expand these to:

-n 0
-n 1
…
-n 999999

www.cs.wisc.edu/Condor 75

Better Submit File

Example Condor submit file that defines
a cluster of 1,000,000 jobs with different
directories
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Transfer_Input_Files = cosmos.dat
Arguments = –f cosmos.dat ·All share arguments
InitialDir = run_$(Process) ·run_0 … run_999999
Queue 1000000 ·Jobs 104.0 … 104.999999

All 1,000,000 jobs described in a ten
line submit file!!!

www.cs.wisc.edu/Condor 76

Finally, we submit them all.
Be patient, it’ll take a while…
[einstein@submit ~]$ condor_submit cosmos.sub
Submitting job

(s) ..
..
..
..
..
...................

Logging submit event
(s) ..
..
..
..
..
...................

1000000 job(s) submitted to cluster 104.

www.cs.wisc.edu/Condor 77

The Job Queue
[einstein@submit ~]$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> :

submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
104.0 einstein 4/20 12:08 0+00:00:05 R 0 9.8 cosmos –f cosmos.dat
104.1 einstein 4/20 12:08 0+00:00:03 I 0 9.8 cosmos –f cosmos.dat
104.2 einstein 4/20 12:08 0+00:00:01 I 0 9.8 cosmos –f cosmos.dat
104.3 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos –f cosmos.dat
...
104.999998 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos –f cosmos.dat
104.999999 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos –f cosmos.dat

999999 jobs; 999998 idle, 1 running, 0 held

www.cs.wisc.edu/Condor 78

CHTC Condor Pool

CHTC
submit

Einstein’s jobs
Other user’s jobs

submit.chtc.wisc.edu

Condor
schedd

Job
Queue

$ condor_submit

Job Ad Job Ad Job Ad

cosmos.sub

cm.chtc.
wisc.edu

[einstein@submit ~]$

www.cs.wisc.edu/Condor 79

7. Relax
›  Condor is watching over

your jobs
h Will restart them if

required, etc.
›  Time for a cold one!
›  While I’m waiting…

h Is there more that I can
do with Condor?

www.cs.wisc.edu/Condor

Looking Deeper

www.cs.wisc.edu/Condor 81

Oh <censored>!!!
My Biggest Blunder Ever

›  Albert removes Rμν
(Cosmological Constant)
from his equations, and
needs to remove his
running jobs

›  We’ll just ignore that
modern cosmologists
may have re-introduced
Rμν (so called “dark
energy”)

www.cs.wisc.edu/Condor 82

Removing Jobs
›  If you want to remove a job from the

Condor queue, you use condor_rm
›  You can only remove jobs that you own
›  Privileged user can remove any jobs

h “root” on UNIX / Linux
h “administrator” on Windows

www.cs.wisc.edu/Condor 83

Removing jobs (continued)
›  Remove an entire cluster:

h condor_rm 4 ·Removes the whole cluster

›  Remove a specific job from a cluster:
h condor_rm 4.0 ·Removes a single job

› Or, remove all of your jobs with “-a”
h DANGEROUS!!
h condor_rm -a ·Removes all jobs / clusters

www.cs.wisc.edu/Condor 84

How can I tell Condor that
my jobs are Physics related?

›  In the submit description file,
introduce an attribute for the job
+Department = "physics"

 Causes the Job Ad to contain:
Department = "physics"

www.cs.wisc.edu/Condor 85

Matching Machine
Configuration

› Machines can be configured to:
h Give higher rank to physics jobs
h Pre-empt non-physics jobs when a

physics job comes along
h See Alan's “Basic Condor Administration”

tutorial @ 1:15 today for more about
machine policy expressions

www.cs.wisc.edu/Condor 86

How Can I Control Where
my Jobs Run?

› Some of the machines in the pool can’t
successfully run my jobs
h Not enough RAM
h Not enough scratch disk space
h Required software not installed
h Etc.

www.cs.wisc.edu/Condor 87

Specify Job Requirements
›  A boolean expression (syntax similar to C or Java)
›  Evaluated with attributes from machine ad(s)
›  Must evaluate to True for a match to be made
Universe = vanilla
Executable = cosmos
Log = cosmos.log
InitialDir = run_$(Process)
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Requirements = ((Memory >= 4096) && \
 (Disk > 10000))

Queue 1000000

www.cs.wisc.edu/Condor 88

Advanced Requirements
›  Requirements can match custom attributes

in your Machine Ad
h Can be added by hand to each machine
h Or, automatically using the Hawkeye ClassAd

Daemon Hooks mechanism
Universe = vanilla
Executable = cosmos
Log = cosmos.log
InitialDir = run_$(Process)
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Requirements = ((Memory >= 4096) && \
 (Disk > 10000) && \
 (CosmosData =!=

UNDEFINED))
Queue 1000000

www.cs.wisc.edu/Condor 89

CosmosData =!= UNDEFINED ???
›  What’s this “=!=” and “UNDEFINED”
business?
h Is this like the state of Schrödinger’s Cat?

›  Introducing ClassAd Meta Operators:
h Allow you to test if a attribute is in a ClassAd
h Is identical to operator: “=?=”
h Is not identical to operator: “=!=”
h Behave similar to == and !=, but are not strict
h Somewhat akin to Python’s “is NONE” and “is not
NONE”

h Without these, ANY expression with an
UNDEFINED in it will always evaluate to UNDEFINED

www.cs.wisc.edu/Condor 90

Meta Operator Examples

Expression Evaluates to
10 == UNDEFINED UNDEFINED

UNDEFINED == UNDEFINED UNDEFINED

10 =?= UNDEFINED False

UNDEFINED =?= UNDEFINED True

UNDEFINED =!= UNDEFINED False

www.cs.wisc.edu/Condor 91

More Meta Operator Examples
Expression X Evaluates to

X == 10

10 True
5 False

“ABC” ERROR
* UNDEFINED

X =!= UNDEFINED

5 True
10 True
“ABC” True
* False

*: X is not present in the ClassAd

www.cs.wisc.edu/Condor 92

One Last Meta Example
Expression X Evaluates to

((X =!= UNDEFINED) &&
 (X == 10))
Is logically equivalent to:
 (X =?= 10)

10 True
5 False
11 False
* False

((X =?= UNDEFINED) ||
 (X != 10))
Is logically equivalent to:
 (X =!= 10)

10 False

5 True

11 True

* True

*: X is not present in the ClassAd

www.cs.wisc.edu/Condor 93

Using Attributes from the Machine Ad
›  You can use attributes from the matched

Machine Ad in your job submit file
η  $$(<attribute>) will be replaced by the value of

the specified attribute in the Machine Ad
›  Example:

η  Matching Machine Ad has:
CosmosData = "/local/cosmos/data"

η  Submit file has:
Executable = cosmos
Requirements = (CosmosData =!= UNDEFINED)
Arguments = -d $$(CosmosData)

η  Resulting command line:
cosmos –d /local/cosmos/data

www.cs.wisc.edu/Condor 94

Specify Job Rank
›  All matches which meet the requirements can be

sorted by preference with a Rank expression
h Numerical
h Higher rank values match first

›  Like Requirements, is evaluated with
attributes from machine ads

Universe = vanilla
Executable = cosmos
Log = cosmos.log
Arguments = -arg1 –arg2
InitialDir = run_$(Process)
Requirements = (Memory >= 4096) && (Disk > 10000)
Rank = (KFLOPS*10000) + Memory
Queue 1000000

www.cs.wisc.edu/Condor 95

Need More Control of Your
Job?

›  Exit status isn't always a good
indicator of job success

› What if my job gets a signal?
h SIGSEGV
h SIGBUS

›  ...

www.cs.wisc.edu/Condor 96

Job Policy Expressions
›  User can supply job policy expressions in

the submit file.
›  Can be used to describe a successful run.

 on_exit_remove = <expression>
 on_exit_hold = <expression>
 periodic_remove = <expression>
 periodic_hold = <expression>

www.cs.wisc.edu/Condor 97

Job Policy Examples
› Do not remove if exits with a signal:

on_exit_remove = ExitBySignal == False

›  Place on hold if exits with nonzero status
or ran for less than an hour:
on_exit_hold =
 ((ExitBySignal==False) && (ExitSignal != 0)) ||
 ((ServerStartTime - JobStartDate) < 3600)

›  Place on hold if job has spent more than
50% of its time suspended:
periodic_hold =
 (CumulativeSuspensionTime >
 (RemoteWallClockTime / 2.0))

www.cs.wisc.edu/Condor 98

How can my jobs access
their data files?

www.cs.wisc.edu/Condor 99

Access to Data in Condor
›  Condor can transfer files

h We’ve already seen examples of this
h Can automatically send back changed files
h Atomic transfer of multiple files
h The files can be encrypted over the wire
h New: Condor can now transfer directories

›  Shared file system (NFS / AFS)
›  HDFS
›  Remote I/O Socket (parrot)
›  Standard Universe can use remote system

calls (more on this later)

www.cs.wisc.edu/Condor 100

NFS / AFS
›  Condor can be configured to allow access to

NFS and AFS shared resources
›  AFS is available on most of CHTC
›  Your program can access /afs/...
›  Note: Condor runs your job without your

AFS credentials
h At UW Computer Sciences, you must grant

net:cs access to all Condor job input, output, and
log files stored in AFS directories.

h Elsewhere, you'll have to do something similar

www.cs.wisc.edu/Condor 101

I Need to run lots of
Short-Running Jobs

›  First: Condor is a High Throughput system,
designed for long running jobs
h Starting a job in Condor is somewhat expensive

›  Batch your short jobs together
h Write a wrapper script that will run a number

of them in series
h Submit your wrapper script as your job

›  Explore Condor’s parallel universe
›  There are some configuration parameters

that may be able to help
h Contact a Condor staff person for more info

www.cs.wisc.edu/Condor 102

Need to Learn Scripting?
›  CS 368 / Summer 2011
›  Introduction to Scripting Languages
›  Two Sections

h Both taught by Condor Staff Members
h Section 1

•  Perl
•  Instructor: Tim Cartwright (Condor Staff)

h Section 2
•  Advanced Python
•  Instructor: Nick LeRoy (me)

www.cs.wisc.edu/Condor 103

I Need Help!

www.cs.wisc.edu/Condor 104

My Jobs Are Idle
›  Our scientist runs condor_q and finds all his

jobs are idle

[einstein@submit ~]$ condor_q
-- Submitter: x.cs.wisc.edu : <128.105.121.53:510> :x.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
4.0 einstein 4/20 13:22 0+00:00:00 I 0 9.8 cosmos -arg1 –arg2
5.0 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 0
5.1 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 1
5.2 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 2
5.3 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 3
5.4 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 4
5.5 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 5
5.6 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 6
5.7 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 7
8 jobs; 8 idle, 0 running, 0 held

www.cs.wisc.edu/Condor 105

Exercise a little patience

› On a busy pool, it can take a while
to match and start your jobs

› Wait at least a negotiation cycle
or two (typically a few minutes)

www.cs.wisc.edu/Condor 106

Check Machine's Status
[einstein@submit ~]$ condor_status
Name OpSys Arch State Activity LoadAv Mem ActvtyTime
slot1@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 4599 0+00:10:13
slot2@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 1+19:10:36
slot3@c002.chtc.wi LINUX X86_64 Claimed Busy 0.990 1024 1+22:42:20
slot4@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:22:10
slot5@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:17:00
slot6@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:09:14
slot7@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+19:13:49
...
vm1@INFOLABS-SML65 WINNT51 INTEL Owner Idle 0.000 511 [Unknown]
vm2@INFOLABS-SML65 WINNT51 INTEL Owner Idle 0.030 511 [Unknown]
vm1@INFOLABS-SML66 WINNT51 INTEL Unclaimed Idle 0.000 511 [Unknown]
vm2@INFOLABS-SML66 WINNT51 INTEL Unclaimed Idle 0.010 511 [Unknown]
vm1@infolabs-smlde WINNT51 INTEL Claimed Busy 1.130 511 [Unknown]
vm2@infolabs-smlde WINNT51 INTEL Claimed Busy 1.090 511 [Unknown]
 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/WINNT51 104 78 16 10 0 0 0
 X86_64/LINUX 759 170 587 0 0 1 0

 Total 863 248 603 10 0 1 0

www.cs.wisc.edu/Condor 107

Not Matching at All?
condor_q –analyze

[einstein@submit ~]$ condor_q -ana 29
The Requirements expression for your job is:

((target.Memory > 8192)) && (target.Arch == "INTEL") &&
(target.OpSys == "LINUX") && (target.Disk >= DiskUsage) &&
(TARGET.FileSystemDomain == MY.FileSystemDomain)
Condition Machines Matched Suggestion
--------- ----------- -------- -----------
1 ((target.Memory > 8192)) 0 MODIFY TO 4000
2 (TARGET.FileSystemDomain == "cs.wisc.edu")584
3 (target.Arch == "INTEL") 1078
4 (target.OpSys == "LINUX") 1100
5 (target.Disk >= 13) 1243

www.cs.wisc.edu/Condor 108

Learn about available
resources:

[einstein@submit ~]$ condor_status –const 'Memory > 8192'
(no output means no matches)
[einstein@submit ~]$ condor_status -const 'Memory > 4096'
Name OpSys Arch State Activ LoadAv Mem ActvtyTime
vm1@s0-03.cs. LINUX X86_64 Unclaimed Idle 0.000 5980 1+05:35:05
vm2@s0-03.cs. LINUX X86_64 Unclaimed Idle 0.000 5980 13+05:37:03
vm1@s0-04.cs. LINUX X86_64 Unclaimed Idle 0.000 7988 1+06:00:05
vm2@s0-04.cs. LINUX X86_64 Unclaimed Idle 0.000 7988 13+06:03:47

 Total Owner Claimed Unclaimed Matched Preempting
 X86_64/LINUX 4 0 0 4 0 0
 Total 4 0 0 4 0 0

www.cs.wisc.edu/Condor 109

Held Jobs
›  Now he discovers that his jobs are in the ‘H’

state…

[einstein@submit ~]$ condor_q
-- Submitter: x.cs.wisc.edu : <128.105.121.53:510> :x.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
4.0 einstein 4/20 13:22 0+00:00:00 H 0 9.8 cosmos -arg1 –arg2
5.0 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 0
5.1 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 1
5.2 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 2
5.3 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 3
5.4 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 4
5.5 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 5
5.6 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 6
5.7 einstein 4/20 12:23 0+00:00:00 H 0 9.8 cosmos -arg1 –n 7
8 jobs; 0 idle, 0 running, 8 held

www.cs.wisc.edu/Condor 110

Look at jobs on hold
[einstein@submit ~]$ condor_q –hold
-- Submiter: submit.chtc.wisc.edu :

<128.105.121.53:510> :submit.chtc.wisc.edu
 ID OWNER HELD_SINCE HOLD_REASON
 6.0 einstein 4/20 13:23 Error from starter

on skywalker.cs.wisc.edu

9 jobs; 8 idle, 0 running, 1 held

Or, see full details for a job

[einstein@submit ~]$ condor_q –l 6.0
…
HoldReason = "Error from starter"
…

www.cs.wisc.edu/Condor 111

Look in the Job Log
›  The job log will likely contain clues:
[einstein@submit ~]$ cat cosmos.log
000 (031.000.000) 04/20 14:47:31 Job submitted from

host: <128.105.121.53:48740>
...
007 (031.000.000) 04/20 15:02:00 Shadow exception!
 Error from starter on gig06.stat.wisc.edu:

Failed to open '/scratch.1/einstein/workspace/v67/
condor-test/test3/run_0/cosmos.in' as standard
input: No such file or directory (errno 2)

 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
...

www.cs.wisc.edu/Condor 112

Interact With Your Job
› Why is my job still running?

h Is it stuck accessing a file?
h Is it in an infinite loop?

›  Try condor_ssh_to_job
h Interactive debugging in UNIX
h Use ps, top, gdb, strace, lsof, …
h Forward ports, X, transfer files, etc.
h Currently not available on Windows

www.cs.wisc.edu/Condor 113

Interactive Debug Example

einstein@phy:~$ condor_q

-- Submitter: cosmos.phy.wisc.edu : <128.105.165.34:1027> :
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 1.0 einstein 4/15 06:52 1+12:10:05 R 0 10.0 cosmos

1 jobs; 0 idle, 1 running, 0 held

[einstein@submit ~]$ condor_ssh_to_job 1.0

Welcome to slot4@c025.chtc.wisc.edu!
Your condor job is running with pid(s) 15603.

$ gdb –p 15603
 …

www.cs.wisc.edu/Condor 114

It’s Still not Working!!!!
›  Go back and verify that your program

runs stand alone
h We’ve had many cases in which users

blame Condor, but haven’t tried running
it outside of Condor (See “Baby Steps”)

› Help is but an email away:
h chtc@cs.wisc.edu for CHTC help
h condor-admin@cs.wisc.edu for

Condor-specific help

www.cs.wisc.edu/Condor 115

Parallel Universes

www.cs.wisc.edu/Condor 116

MW: A Master-Worker
Grid Toolkit

›  Provides a mechanism for controlling
parallel algorithms
h Fault tolerant
h Allows for resources to come and go
h Ideal for Computational Grid settings

›  To use, write your software using the MW
API

› http://www.cs.wisc.edu/condor/mw/

www.cs.wisc.edu/Condor 117

MPI jobs

Example submit input file that for an MPI job
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

Note: Condor will probably not schedule all of
your jobs on the same machine

Try using whole machine slots
h Talk to a Condor staff member for details

www.cs.wisc.edu/Condor 118

Map Reduce
›  Condor provides a powerful execution

environment for running parallel
applications like MPI.
h The Parallel Universe (PU) of Condor is built

specifically for this purpose
h The Map-Reduce (MR) is a relatively recent

programming model particularly suitable for
applications that require processing a large set
of data on cluster of computers.

›  A popular open-source implementation of
MR framework is provided by Hadoop
project by Apache Software Foundation.

www.cs.wisc.edu/Condor 119

Map Reduce On Condor
›  Uses Condor’s Parallel Universe resource

manager to select a subset of machines within
a cluster
h Sets up a Hadoop MR cluster on these machines
h Submits a MR job and clean-up once the job is

finished
h These machines will be available as dedicated

resources for the duration of the job
h User can choose which machine should act as a

master and communication channels between
masters and slave nodes are also established

http://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=MapReduce

www.cs.wisc.edu/Condor 120

Human Genome Sequencing
›  A team of computer scientists from the University

of Wisconsin-Madison and the University of
Maryland recently assembled a full human genome
from millions of pieces of data — stepping up from
commonly assembled genomes several orders of
magnitude less complex — and they did it without
a big-ticket supercomputer.
h July 19, 2010 -- UW Press Release
h http://www.news.wisc.edu/18240

›  This computation was done using Condor & Hadoop
on CHTC

www.cs.wisc.edu/Condor 121

Accessing Large Data Sets
via HDFS

›  HDFS
h Allows disk space to be pooled into one resource
h For the CS CHTC cluster, that is on the order of a

couple hundred terabytes
›  Can enable jobs with large I/O to run without

filling up the spool on submit machine
›  However, HDFS has no security so should not

be used for sensitive data
h Condor adds basic host-based security (better than

nothing)
h The Hadoop people are adding better security, but

not yet available

www.cs.wisc.edu/Condor 122

HDFS @ CHTC
›  Command line tools are available to move

files in and out of the HDFS
›  The Human Genome Sequencing from a

couple of slides ago used HDFS
h However, it’s the only real job that’s exercised

our HDFS setup so far…

www.cs.wisc.edu/Condor 123

We’ve seen how Condor can:

›  Keep an eye on your jobs
η Keep you posted on their progress

›  Implement your policy on the
execution order of the jobs

›  Keep a log of your job activities

www.cs.wisc.edu/Condor 124

More User Issues...

› We need more disk space for our jobs
› We have users that come and go

www.cs.wisc.edu/Condor 125

Your own Submit Host
›  Benefits:

h As much disk space as you need (or can
afford)

h Manage your own users
›  Getting Started:

h Download & install appropriate Condor
binaries

h "Flock" into CHTC and other campus pools

www.cs.wisc.edu/Condor 126

Getting Condor
›  Available as a free download from

 http://www.cs.wisc.edu/condor
›  Download Condor for your operating system

h Available for most modern UNIX platforms
(including Linux and Apple’s OS/X)

h Also for Windows XP / Vista / Windows 7
›  Repositories

h YUM: RHEL 4 & 5
• $ yum install condor

h APT: Debian 4 & 5
• $ apt-get install condor

www.cs.wisc.edu/Condor 127

Condor Releases
›  Stable / Developer Releases

h Version numbering scheme similar to that of the (pre 2.6)
Linux kernels …

›  Major.minor.release
h If minor is even (a.b.c): Stable series

•  Very stable, mostly bug fixes
•  Current: 7.6
•  Examples: 7.4.5, 7.6.0

–  7.6.0 just released
h If minor is odd (a.b.c): Developer series

•  New features, may have some bugs
•  Current: 7.7
•  Examples: 7.5.2, 7.7.0

–  7.7.0 in the works

www.cs.wisc.edu/Condor 128

Condor Installation

› Albert’s sysadmin installs Condor
h This new submit / manager machine
h On department desktop machines

•  Submission points
• Non-dedicated excution machines

–  Configured to only run jobs when the machine is idle

h Enables flocking to CHTC and other
campus pools

www.cs.wisc.edu/Condor 129

Flocking

A Condor-specific

technology which:
•  Allows Condor jobs to

run in other friendly
Condor pools

•  Needs to be set up on
both ends

•  Can be bi-directional

www.cs.wisc.edu/Condor 130

Flocking to CHTC

CHTC
submit

Einstein’s jobs
Other user’s jobs

cosmos.phys.wisc.edu

Condor
schedd

Job
Queue

$ condor_submit

Job Ad Job Ad Job Ad

cosmos.sub
cm.chtc.
wisc.edu

einstein@cosmos:~ $

www.cs.wisc.edu/Condor 131

We STILL Need More
Condor is managing and running our

jobs, but:
§ Our CPU requirements are greater

than our resources
§  Jobs are preempted more often than

we like

www.cs.wisc.edu/Condor 132

Happy Day! The Physics
Department is adding a

cluster!

•  The administrator installs Condor on all
these new dedicated cluster nodes

www.cs.wisc.edu/Condor 133

Adding dedicated nodes
›  The administrator installs Condor on these

new machines, and configures them with his
machine as the central manager
h The central manager:

•  Central repository for the whole pool
•  Performs job / machine matching, etc.

›  These are dedicated nodes, meaning that
they are always able run Condor jobs

www.cs.wisc.edu/Condor 134

Flocking to CHTC

CS CHTC Lab
submit

Einstein’s jobs Other user’s jobs

cm.chtc.
wisc.edu

Physics CHTC Lab
submit cm.physics

.wisc.edu

www.cs.wisc.edu/Condor 135

Some Good Questions…

What are all of
these Condor
Daemons running
on my machine,
and what do they
do?

www.cs.wisc.edu/Condor 136

Condor Daemon Layout

Personal Condor / Central Manager

Master

collector

negotiator

startd

= Process Spawned

schedd

www.cs.wisc.edu/Condor 137

condor_master
›  Starts up all other Condor daemons
›  Runs on all Condor hosts
›  If there are any problems and a daemon

exits, it restarts the daemon and sends email
to the administrator

›  Acts as the server for many Condor remote
administration commands:
h condor_reconfig, condor_restart
h condor_off, condor_on
h condor_config_val
h  etc.

www.cs.wisc.edu/Condor 138

Central Manager:
condor_collector

›  Collects information from all other Condor
daemons in the pool
h “Directory Service” / Database for a Condor pool
h Each daemon sends a periodic update ClassAd to

the collector
›  Services queries for information:

h Queries from other Condor daemons
h Queries from users (condor_status)

›  Only on the Central Manager(s)
›  At least one collector per pool

www.cs.wisc.edu/Condor 139

Condor Pool Layout: Collector
= ClassAd
 Communication
 Pathway

= Process Spawned
Central Manager

Master

Collector

negotiator

www.cs.wisc.edu/Condor 140

Central Manager:
condor_negotiator

›  Performs “matchmaking” in Condor
›  Each “Negotiation Cycle” (typically 5 minutes):

h Gets information from the collector about all
available machines and all idle jobs

h Tries to match jobs with machines that will serve
them

h Both the job and the machine must satisfy each
other’s requirements

›  Only one Negotiator per pool
h Ignoring HAD

›  Only on the Central Manager(s)

www.cs.wisc.edu/Condor 141

Condor Pool Layout:
Negotiator

= ClassAd
 Communication
 Pathway

= Process Spawned
Central Manager

Master

Collector

negotiator

www.cs.wisc.edu/Condor 142

Execute Hosts:
condor_startd

›  Represents a machine to the Condor
system

›  Responsible for starting, suspending,
and stopping jobs

›  Enforces the wishes of the machine
owner (the owner’s “policy”… more on
this in the administrator’s tutorial)

›  Creates a “starter” for each running
job

› One startd runs on each execute node

www.cs.wisc.edu/Condor 143

Condor Pool Layout: startd
= ClassAd
 Communication
 Pathway

= Process Spawned

Central Manager

Master

Collector
schedd

negotiator
Cluster Node

Master

startd

Cluster Node
Master

startd

Workstation
Master

startd
schedd

Workstation
Master

startd
schedd

www.cs.wisc.edu/Condor 144

Submit Hosts:
condor_schedd

›  Condor’s Scheduler Daemon
›  One schedd runs on each submit host
›  Maintains the persistent queue of jobs
›  Responsible for contacting available machines

and sending them jobs
›  Services user commands which manipulate the

job queue:
h condor_submit, condor_rm, condor_q,

condor_hold, condor_release, condor_prio, …
›  Creates a “shadow” for each running job

www.cs.wisc.edu/Condor 145

Condor Pool Layout: schedd
= ClassAd
 Communication
 Pathway

= Process Spawned

Cluster Node
Master

startd

Cluster Node
Master

startd

Central Manager

Master

Collector
schedd

negotiator

Workstation
Master

startd
schedd

Workstation
Master

startd
schedd

www.cs.wisc.edu/Condor 146

Condor Pool Layout: master
= ClassAd
 Communication
 Pathway

= Process Spawned

Central Manager

Master

Collector
schedd

negotiator
Cluster Node

Master

startd

Cluster Node
Master

startd

Cluster Node
Master

startd
schedd

Cluster Node
Master

startd
schedd

www.cs.wisc.edu/Condor 147

What’s the
“condor_shadow”

›  The Shadow processes are Condor’s
local representation of your running
job
h One is started for each job

› Similarly, on the “execute” machine, a
condor_starter is run for each job

www.cs.wisc.edu/Condor 148

Condor Pool Layout: running a job
= Communication
 Pathway

= Process Spawned Submit Host

Master

schedd

shadow shadow

Execute Host

Master

startd

starter starter

Job Job

Execute Host

Master

startd

starter

Job

shadow

www.cs.wisc.edu/Condor 149

My new jobs can run for
20 days…

•  What happens when a job
is forced off its CPU?
–  Preempted by higher

priority user or job
– Vacated because of user

activity
•  How can I add fault

tolerance to my jobs?

www.cs.wisc.edu/Condor 150

›  Condor’s process checkpointing
provides a mechanism to
automatically save the state of a job

›  The process can then be restarted
from right where it was
checkpointed
h After preemption, crash, etc.

Condor’s Standard Universe
to the rescue!

www.cs.wisc.edu/Condor 151

›  Remote system calls (remote I/O)
h Your job can read / write files as if

they were local
› No source code changes typically

required
›  Programming language independent
›  Relinking of your execute is required

Other Standard Universe
Features

www.cs.wisc.edu/Condor 152

Checkpointing:
Process Starts

checkpoint: the entire state of a program,
saved in a file
§  CPU registers, memory image, I/O

time

www.cs.wisc.edu/Condor 153

Checkpointing:
Process Checkpointed

time

1 2 3

www.cs.wisc.edu/Condor 154

Checkpointing:
Process Killed

time

3

3

Killed!

www.cs.wisc.edu/Condor 155

Checkpointing:
Process Resumed

time

3

3

goodput badput goodput

www.cs.wisc.edu/Condor 156

When will Condor
checkpoint your job?

›  Periodically, if desired
h For fault tolerance

›  When your job is preempted by a higher
priority job

›  When your job is vacated because the
execution machine becomes busy

›  When you explicitly run condor_checkpoint,
condor_vacate, condor_off or
condor_restart command

www.cs.wisc.edu/Condor 157

Making the Standard
Universe Work

›  The job must be relinked with Condor’s
standard universe support library

›  To relink, place condor_compile in front of
the command used to link the job:
% condor_compile gcc -o myjob myjob.c

- OR -
% condor_compile f77 -o myjob filea.f fileb.f

- OR -
% condor_compile make –f MyMakefile

www.cs.wisc.edu/Condor 158

Limitations of the
Standard Universe

›  Condor’s checkpointing is not at the kernel
level.

› Standard Universe the job may not:
h Fork()
h Use kernel threads
h Use some forms of IPC, such as pipes

and shared memory
›  Must have access to source code to relink
›  Many typical scientific jobs are OK
›  Only available on Linux platforms

www.cs.wisc.edu/Condor 159

Death of the
Standard Universe*

*It’s only MOSTLY dead

www.cs.wisc.edu/Condor 160

DMTCP & Parrot
›  DMTCP (Checkpointing)

h “Distributed MultiThreaded Checkpointing”
h Developed at Northeastern University
h http://dmtcp.sourceforge.net/
h See Gene Cooperman's (Northeastern University) talk

tomorrow (Wednesday) @ 4:05
›  Parrot (Remote I/O)

h Parrot is a tool for attaching existing programs to remote
I/O system

h Developed by Doug Thain (now at Notre Dame)
h http://www.cse.nd.edu/~ccl/software/parrot/
h dthain@nd.edu

www.cs.wisc.edu/Condor 161

VM Universe
›  Runs a virtual machine instance as a job
›  VM Universe:

h Job sandboxing
h Checkpoint and migration
h Safe elevation of privileges
h Cross-platform

›  Supports VMware, Xen, KVM
›  Input files can be imported as CD-ROM

image
›  When the VM shuts down, the modified disk

image is returned as job output

www.cs.wisc.edu/Condor 162

Albert meets The Grid
›  Albert also has access to grid resources he

wants to use
h He has certificates and access to Globus or

other resources at remote institutions
›  But Albert wants Condor’s queue

management features for his jobs!
›  He installs Condor so he can submit “Grid

Universe” jobs to Condor

www.cs.wisc.edu/Condor 163

Grid Universe
›  All handled in your submit file
›  Supports many “back end” types:

h Globus: GT2, GT4
h NorduGrid
h UNICORE
h Condor
h PBS
h LSF
h EC2
h NQS

www.cs.wisc.edu/Condor 164

Grid Universe & Globus 2
› Used for a Globus GT2 back-end

h “Condor-G”
›  Format:
Grid_Resource = gt2 Head-Node
Globus_rsl = <RSL-String>

›  Example:
Universe = grid
Grid_Resource = gt2 beak.cs.wisc.edu/jobmanager
Globus_rsl = (queue=long)(project=atom-smasher)

www.cs.wisc.edu/Condor 165

Grid Universe & Globus 4
› Used for a Globus GT4 back-end
› Format:
Grid_Resource = gt4 <Head-Node> <Scheduler-Type>
Globus_XML = <XML-String>

› Example:
Universe = grid
Grid_Resource = gt4 beak.cs.wisc.edu Condor
Globus_xml = <queue>long</queue><project>atom-

smasher</project>

www.cs.wisc.edu/Condor 166

Grid Universe & Condor
›  Used for a Condor back-end

h “Condor-C”
›  Format:
Grid_Resource = condor <Schedd-Name> <Collector-Name>
Remote_<param> = <value>

h “Remote_” part is stripped off
›  Example:
Universe = grid
Grid_Resource = condor beak condor.cs.wisc.edu
Remote_Universe = standard

www.cs.wisc.edu/Condor 167

Grid Universe & NorduGrid
› Used for a NorduGrid back-end
Grid_Resource = nordugrid <Host-Name>

›  Example:
Universe = grid

Grid_Resource = nordugrid ngrid.cs.wisc.edu

www.cs.wisc.edu/Condor 168

Grid Universe & UNICORE
› Used for a UNICORE back-end
›  Format:
Grid_Resource = unicore <USite> <VSite>

›  Example:
Universe = grid

Grid_Resource = unicore uhost.cs.wisc.edu vhost

www.cs.wisc.edu/Condor 169

Grid Universe & PBS
› Used for a PBS back-end
›  Format:
Grid_Resource = pbs

›  Example:
Universe = grid
Grid_Resource = pbs

www.cs.wisc.edu/Condor 170

Grid Universe & LSF
› Used for a LSF back-end
›  Format:
Grid_Resource = lsf

›  Example:
Universe = grid
Grid_Resource = lsf

www.cs.wisc.edu/Condor 171

Credential Management
›  Condor will do The Right Thing™ with your

X509 certificate and proxy
›  Override default proxy:

h X509UserProxy = /home/einstein/other/proxy

›  Proxy may expire before jobs finish
executing
h Condor can use MyProxy to renew your proxy
h When a new proxy is available, Condor will

forward the renewed proxy to the job
h This works for non-grid jobs, too

www.cs.wisc.edu/Condor 172

Albert wants Condor features
on remote resources

› He wants to run standard universe
jobs on Grid-managed resources
h For matchmaking and dynamic scheduling

of jobs
h For job checkpointing and migration
h For remote system calls

www.cs.wisc.edu/Condor 173

Condor GlideIn
›  Albert can use the Grid Universe to run

Condor daemons on Grid resources
›  When the resources run these GlideIn

jobs, they will temporarily join his Condor
Pool

›  He can then submit Standard, Vanilla, or
MPI Universe jobs and they will be
matched and run on the remote resources

›  Currently only supports Globus GT2
h We hope to fix this limitation

www.cs.wisc.edu/Condor 174

your
workstation

Friendly Condor Pool

personal
Condor

600 Condor
jobs

Globus Grid

PBS LSF

Condor

Condor Pool

 glide-in jobs

www.cs.wisc.edu/Condor 175

How It Works
Manager

LSF

User Job

Startd

Personal Condor Remote Resource

Condor jobs

GlideIn
jobs

Starter

Schedd Collector &
Negotiator

Grid
Manager

Shadow

Master

www.cs.wisc.edu/Condor 176

GlideIn Concerns
›  What if the remote resource kills my

GlideIn job?
h That resource will disappear from your pool and

your jobs will be rescheduled on other machines
h Standard universe jobs will resume from their

last checkpoint like usual
›  What if all my jobs are completed before a

GlideIn job runs?
h If a GlideIn Condor daemon is not matched with

a job in 10 minutes, it terminates, freeing the
resource

www.cs.wisc.edu/Condor 177 Dan, Condor Week 2008

The Job Router
A Flexible Job Transformer

›  Acts upon jobs in queue
›  Policy controls when:

h (jobs currently routed to site X) < max
h (idle jobs routed to site X) < max
h (rate of recent failure at site X) < max

›  And how to:
h Change attribute values (e.g. Universe)
h Insert new attributes (e.g. GridResource)
h Other arbitrary actions in hooks

www.cs.wisc.edu/Condor 178 Dan, Condor Week 2008

Example: sending excess
vanilla jobs to a grid site

Universe = “vanilla”
Executable = “sim”
Arguments = “seed=345”
Output = “stdout.345”
Error = “stderr.345”
ShouldTransferFiles = True
WhenToTransferOutput = “ON_EXIT”

Universe = “grid”
GridType = “gt2”
GridResource = \
 “cmsgrid01.hep.wisc.edu/jobmanager-condor”
Executable = “sim”
Arguments = “seed=345”
Output = “stdout”
Error = “stderr”
ShouldTransferFiles = True
WhenToTransferOutput = “ON_EXIT”

JobRouter
Routing Table:
 Site 1
 …
 Site 2
 …

final status

routed (grid) job original (vanilla) job

www.cs.wisc.edu/Condor 179 Dan, Condor Week 2008

JobRouter vs. Glidein
›  Glidein - Condor overlays the grid

h Job never waits in remote queue
h Full job management (e.g. condor_ssh_to_job)
h Private networks doable, but add to complexity
h Need something to submit glideins on demand

›  JobRouter
h Some jobs wait in remote queue (MaxIdleJobs)
h Job must be compatible with target grid

semantics
h Job managed by remote batch system
h Simple to set up, fully automatic to run

www.cs.wisc.edu/Condor 180

My jobs have have
dependencies…

›  Can Condor help solve my dependency
problems?

› DAGMan to the rescue
› See Kent’s tutorial @ 11:30 today

›  Immediately following this tutorial

www.cs.wisc.edu/Condor 181

SOAR
›  What is SOAR?

h A System Of Automatic Runs
h A framework for collecting N jobs into a DAG,

 submitting them to Condor and tracking the run
h A tool that lets one make these jobs complex

workflows
h An environment to control production of large sets

of data
h A simple web interface for tracking runs and

downloading results.

www.cs.wisc.edu/Condor 182

How does SOAR work?

›  SOAR:
h Sweeps drop box for new job data
h Creates the run
h Periodically creates plot and reports

showing progress of run
h After the DAG completes, SOAR makes

your results available through the web
interface

www.cs.wisc.edu/Condor 183

View SOAR Job Progress

www.cs.wisc.edu/Condor 184

SOAR

› When is it best used?
h When a production environment is

desired.
h When a researcher is Linux challenged
h When each job is a complex DAG in

itself.
›  Web peak: www.submit.chtc.wisc.edu/SOAR/
›  Info: Bill Taylor bt@cs.wisc.edu CHTC Staff

www.cs.wisc.edu/Condor 185

General User Commands
›  condor_status View Pool Status
›  condor_q View Job Queue
›  condor_submit Submit new Jobs
›  condor_rm Remove Jobs
›  condor_prio Intra-User Prios
›  condor_history Completed Job Info
›  condor_submit_dag Submit new DAG
›  condor_checkpoint Force a checkpoint
›  condor_compile Link Condor library

www.cs.wisc.edu/Condor 186

Condor Job Universes
•  Vanilla Universe
•  Standard Universe
•  Grid Universe
•  Scheduler Universe
•  Local Universe
•  Virtual Machine

Universe
•  Java Universe

•  Parallel Universe
•  MPICH-1
•  MPICH-2
•  LAM
•  …

www.cs.wisc.edu/Condor 187

Why have a special
Universe for Java jobs?

›  Java Universe provides more than just
inserting “java” at the start of the execute
line of a vanilla job:
h Knows which machines have a JVM installed
h Knows the location, version, and performance of

JVM on each machine
h Knows about jar files, etc.
h Provides more information about Java job

completion than just JVM exit code
•  Program runs in a Java wrapper, allowing Condor to

report Java exceptions, etc.

www.cs.wisc.edu/Condor 188

 Java Universe Example
Example Java Universe Submit file
Universe = java
Executable = Main.class
jar_files = MyLibrary.jar
Input = infile
Output = outfile
Arguments = Main 1 2 3
Queue

www.cs.wisc.edu/Condor 189

Java support, cont.
bash-2.05a$ condor_status –java
 Name JavaVendor Ver State Actv LoadAv Mem
abulafia.cs Sun Microsy 1.5.0_ Claimed Busy 0.180 503
acme.cs.wis Sun Microsy 1.5.0_ Unclaimed Idle 0.000 503
adelie01.cs Sun Microsy 1.5.0_ Claimed Busy 0.000 1002
adelie02.cs Sun Microsy 1.5.0_ Claimed Busy 0.000 1002
…
 Total Owner Claimed Unclaimed Matched Preempting
 INTEL/LINUX 965 179 516 250 20 0
 INTEL/WINNT50 102 6 65 31 0 0
SUN4u/SOLARIS28 1 0 0 1 0 0
 X86_64/LINUX 128 2 106 20 0 0

 Total 1196 187 687 302 20 0

www.cs.wisc.edu/Condor 190

In Review
With Condor’s help, Albert can:

h Manage his compute job workload
h Access local machines
h Access remote Condor Pools via flocking
h Access remote compute resources on

the Grid via “Grid Universe” jobs
h Carve out his own personal Condor Pool

from the Grid with GlideIn technology

www.cs.wisc.edu/Condor 191

Administrator Commands
›  condor_vacate Leave a machine now
›  condor_on Start Condor
›  condor_off Stop Condor
›  condor_reconfig Reconfig on-the-fly
›  condor_config_val View/set config
›  condor_userprio User Priorities
›  condor_stats View detailed usage

 accounting stats

www.cs.wisc.edu/Condor 192

My boss wants to watch what
Condor is doing

www.cs.wisc.edu/Condor 193

Use CondorView!
›  Provides visual graphs of current and past

utilization
›  Data is derived from Condor's own accounting

statistics
›  Interactive Java applet
›  Quickly and easily view:

h How much Condor is being used
h How many cycles are being delivered
h Who is using them
h Utilization by machine platform or by user

www.cs.wisc.edu/Condor 194

CondorView Usage Graph

www.cs.wisc.edu/Condor 195

I could also talk lots about…
›  CCB: Living with firewalls & private networks
›  Federated Grids/Clusters
›  APIs and Portals
›  MW
›  High Availability Fail-over
›  Compute On-Demand (COD)
›  Role-based prioritization and accounting
›  Strong security, including privilege separation
›  Data movement scheduling in workflows
›  …

www.cs.wisc.edu/Condor 196

Thank you!

Check us out on the Web:
http://www.condorproject.org

Email:

condor-admin@cs.wisc.edu

