
Table II
BREAKDOWN OF TIME USED BY CONDOR

Total time Seconds Time Percent
used by Condor 1610913772 51y 29d 100%
- successful execution 559065399 17y 265 d 35%
Wasted 1051848373 33y 129d 65%
- jobs that completed 228979785 7y 95d 14%
- for removed jobs 822868588 26y 33d 51%

is shown in Table II. The time wasted by Condor on jobs
removed before execution was 0 seconds. However, the time
consumed by jobs that started and were then removed by the
user was just over 51%. Only 35% of time consumed by
Condor went to successfully completing jobs the remaining
15% went on executions that were evicted. In effect for every
1 second of useful execution time required from Condor
2.8 seconds of actual computing time was needed. Even
if we negate jobs removed by the user this still leaves
1.4 seconds Condor time for every successful second of
execution. Clearly this is not an energy efficient use of the
Condor system.

Analysis of those jobs which wasted time indicates that
99% of wasted time is due to under 5% of job submissions.
Figure 4 illustrates the average wasted time for jobs of a
given successful execution time. For jobs with successful
execution times less than 160 minutes the average wasted
time is small and fairly linear in comparison to the successful
execution time. After 160 minutes the wasted time becomes
erratic and larger. This indicates an upper bound should per-
haps be placed on the successful execution times to ensure
efficient use of the Condor resources. It should be noted that
this analysis ignores jobs with successful execution times
over 470 minutes (7.3 hours), as there were not enough jobs
in this range to give any statistical significance. Most of the
jobs requiring over 470 minutes of successful execution time
produced significant wasted time. For example two jobs with
successful execution times over 25 hours each wasted over
35 days clearly an inefficient use of Condor.

Only 839 (0.013%) submissions used the Rank element,
with ordering being done over preferring Linux to Windows,
preferring computers with more memory and preferring
computers with higher load. The last case appears to be a
misunderstanding of how Condor works.

Figure 5 reflects the use of a single open access cluster
within the University running Windows XP over a one-week
period. The blue area indicates computers that are occupied
by users whilst red indicates powered up computers. The
computers are configured to power down over night as soon
as there are no Condor jobs running on them. Some of
the red areas indicate system maintenance. The number
of computers able to accept jobs overnight is low – this
situation will become worse as Windows 7 is rolled out
where computers will power down during the day if there is

!""#

!"""#

!""""#

!"""""#

!""""""#

!"""""""#

"# $"# !""# !$"# %""# %$"# &""# &$"# '""#

!
"
!
#!
$
%
&'
!
()
%
*
&+
,
%
&-
(%
./
0
*
(1
&

(2..%((324&%5%.2+/0&+,%&-(%./0*(1&

()(*(+,#-(./,0#12,#

Figure 4. Average wasted time per job for given successful execution
times

5

0

10

15

20

25

30

Mon Tue Wed Thu Fri Sat Sun
Day

C
o
m
p
u
te
rs

Figure 5. Example cluster usage

no activity. This particular cluster is open over the weekend,
whilst others will be powered off over the weekend.

IV. POWER MANAGEMENT INFORMATION

It is necessary to know the power consumption of a
computer so we may select between them. To model this
precisely is a difficult task, as each piece of software will
stress different parts of the computer’s architecture. A com-
putationally intensive job may fully load the processor whilst
a data intensive job may stress the disk (or network). These
will each give different power consumption profiles. This is
further compounded by multi-core processors, which have
significantly different electrical power profiles depending on
the number of active cores.

Presently we are working with the assumption that an
active piece of work will produce a constant power load
on the computer during execution. We are therefore inter-
ested in the following information: The number of Floating
Point Operations Per Second (FLOPS) provided per watt of
electricity on each core within a computer and the Power
Usage Effectiveness (PUE) of the computer within its envi-
ronment. Computational power (FLOPS) can be assessed in
different ways some more appropriate than others depending
on computational context. The FLOPS measure may be
ambiguous - factors such as cache coherence, precision etc.


