
!"#$#%& !"#$#%&

'()*(+

,-./#%

'()*(+

012+

3()*(+41-./#%

,-./#11#() 52"(%#6%27,-./#11#()7,!

3()*(+41-./#%

,-./#11#()8

9(*#:&7

,-./#11#()

,-./#11#()8

9()#%(+0;*6%27<(.71%6%-17#)7,2+=#327!"+22/2)%1

<(.7+21-$%1

Figure 9. Interaction between components of the system

them. Policy code is situated within each Agility server,
which monitors and reacts to changes in the SAs.

The interaction life-cycle is illustrated in Figure 9. The
user generates a Condor submit script as normal. When
this script is submitted we intercept it and pass it to the
Client domain Agility server. The Policy module verifies
what relationships it has with the Cloud offering a Condor
service. This relationship states that the submit machine may
submit Condor Submissions along with a priority. The Policy
module then proposes a Submission SA under the existing
Relationship SA.

The Policy module in the Condor domain checks the
proposed SA – in particular if the user allowed to create
submissions of the specified priority. If acceptable the Policy
module in the Submit domain will be informed and the SA
will now be in place. The Condor domain Policy module
may change the requirements of a submission to fulfil its
requirements, such as the required priority. This is achieved
by proposing a change to the submission SA which must
be accepted by both Agility servers. When negotiations are
complete, the real condor submit command is invoked with
the modified submission script, this is then processed by
Condor as normal. Waking up off-line workers with Rooster,
if appropriate, using wake on LAN. A new Job SA will be
created, under its parent Submission SA, for each job within
the submission script. This SA is used to record the progress
of the job through Condor. On completion, the total energy
used by the job is added to the Job SA.

A. Example Policy

Figure 10 shows pseudo code for priority handling Policy
Module. Although the module must implement a number of
methods only those required for SA are illustrated here:

onChanged: This method is invoked whenever a SA
change is confirmed. We are only interested here in newly
created SA where the priority is set to ‘LOW’. In this case
the job submission script will be modified to only use online
workers and the change proposed to other modules.

Class PriorityPolicyModule implements PolicyModule {
onChanged(ServiceAgreement submission) {
if (submission is new && submission.priority == LOW) {
append ‘Offline =?= False’
to submission.requirements
propose changed submission

}
}
changeProposed(ServiceAgreement sa) {
if (proposing my change) {
return ACCEPT

} else {
return IGNORE;

}
}

...
}

Figure 10. Pseudo code for a policy

changeProposed: All modules are asked to vote on all
proposed changes. If this module is being asked to vote on
its own proposal it will respond ‘ACCEPT’ otherwise it will
‘IGNORE’. After voting either the ‘onChanged’ method or
‘onChangeFailed’ method will be called, as appropriate.

B. Agility Policies
The Policies we support include:
Favour Energy Efficient Workers: This Policy modifies the

submission script to add or augment the Rank property with:
Rank = kflops/(PUE ∗ watts). Care needs to be taken
when augmenting an existing Rank statement to scale this
value to match the existing Rank range.

Prioritise Submissions: If the user is permitted to submit
higher priority jobs the submission script is modified to
allow workers to be powered up, or not powered up for
low priority jobs. Other levels could be used here, such
as highest-priority where workers are selected on raw CPU
power with the extra costs being billed back to the user.

Detection of Rogue Submissions: The Condor ‘queue’ is
monitored for rogue jobs identified as:

• A job that has been re-submitted too many times.
• A job that has run for too long.
• A job not proposed through the standard submit server.

In the first two cases the user will be warned about their
jobs. If no response is received within a reasonable time-
scale the jobs will be terminated along with the associated
SA. In the last case the jobs will be terminated.

Backlog Reduction: If a large number of jobs await execu-
tion and do not have the ability to wake up workers Agility
can choose to wake up workers to reduce the backlog.

C. Auditing
A full Audit history can be created from a Submission SA

(and associated Job SAs) as we record all events and event
triggers. In particular we can calculate the power consumed
by each job, which required n attempts to complete:

n∑

i=1

PUEi ∗ wattsi(end timei − start timei)


