
User

WOL

Z
Z
Z

Z
Z
Z

Condor 
Submission

Condor 
System

M
o
n
ito

r

Agreement!"#$#%&' !"#$#%&'

Figure 1. The Condor Agility Architecture

then be automatically re-written to make better use of the
current status of the Condor system. Once accepted the
job is submitted through the standard Condor interface and
Agility monitors its progress. This allows Agility to act as a
dedicated actor intent on ensuring efficient execution of the
job based on policies defined in Agility.

We conclude this section with an analysis of related work.
We briefly describe the Condor system in Section II before
analysing the use of Condor at Newcastle University in
Section III, this provides a motivation for our work. In
Section IV we describe our power management information.
Section V describes the Agility Cloud Computing Platform
used in our architecture, which is described in Section VI.
We look at more advanced power management techniques
in Section VII, before concluding in section VIII.

A. Related Work
As Condor can make use of non-dedicated computers

that might otherwise be sitting idle, it allows for spare
computational cycles, which would otherwise go to waste,
to be used [5]. The use of job check-pointing and migra-
tion can significantly reduce the wasted execution time as
evicted Condor jobs can continue from a pre-saved state [6].
Although this has not been a consideration of our work,
as check-pointing requires a UNIX platform and the ability
to compile your code against the Condor libraries, we see
no reason why our approach could not be applied. UCL
has deployed Condor over its student computer clusters that
allow jobs to run at the same time as users who are actively
using them. This is possible as they use the computers as
thin clients, which use only 5% of the CPU [7], again our
approach could be used here. For organisations with clusters
distributed around the world work can targeted at clusters
outside of working hours[8], we see this as complementary
to our work. The University of Liverpool used a commercial
power management toolset along with a simple UNIX cron
script which monitored the number of waiting Condor jobs,
powering up computers as needed [9]. Their paper pre-
dates Condor Rooster, which along with the use of Agility
provides a more intelligent power management approach.

Figure 2. The standard Condor architecture

II. CONDOR

Condor, developed by the University of Wisconsin, is
a batch job execution service for the purpose of high-
throughput computing. In its default configuration Condor
utilises unused computing power within a collection of
network-connected computers. When a computer has free
cycles available a Condor daemon indicates this to the
Condor Manager, which can then make use it. If someone
starts using the computer (either locally or remotely) Condor
will vacate, either by evicting the active job or migrating the
job elsewhere dependent on the computers configuration.

The Condor system comprises a number of services (Fig-
ure 2). A daemon (Schedd) runs on each submit machine,
containing information on all jobs submitted from that
host. When a user submits a job, the daemon transmits
the job description to the collector. The Startd daemon on
each Execute Machine reports to the Collector the state
of that machine. The Negotiator (or matchmaker) matches
together job descriptions and machine descriptions held in
the Collector notifying the corresponding submit and execute
host daemons about matches [10]. The Schedd will then send
the job to the Startd and generate a Shadow daemon for the
job on the Submit Machine which acts as a local instance
of the remote service for file staging etc. The Startd then
launches the job and interacts with the Shadow daemon.

Condor uses the same description language for both job
and resource descriptions, the ClassAd [11]. These are
semi-structured documents allowing arbitrary elements to be
defined of the form “name” equals “eval”, where “eval” can
be evaluated to a basic type (number, boolean or string). The
Requirements and Rank elements are used for evaluating
matches between documents. A pair of documents are said to
match if both their Requirements evaluate to true. While the
evaluation of the Rank element, to a number, indicates the
quality of the match – higher values are best and will be tried
first. There is no explicit queue as documents can be paired
at any time. This provides a powerful mechanism for users
to indicate a preference, however, most users do not use this
feature – those that do target the most powerful computers. A
Condor submission script is a simplified ClassAd document;
an example is given in Figure 3. To allow for fair sharing a
priority value can be set on a job, which Condor uses when
selecting which documents to process first.


