
Running persistent jobs in Condor
Derek Weitzel & Brian Bockelman

Holland Computing Center

Introduction – HCC
•  University of Nebraska

Holland Computing Center – 2009
•  162 Research groups

– Not all of them are using Condor… wide
variety of users.

•  Condor Applications:
– Bioinformatics: CS-Rosetta, Autodock…
– Math: Graph Transversal
– Physics: CMS and Dzero

Introduction – HCC
•  7,000 Cores, all opportunistic for grid

•  HCC’s Use of the Open Science Grid
–  2.1 Million hours this year

•  Grid usage is based off GlideinWMS &
Engage’s OSG-MM

Open Science Non-HEP Grid Usage

GPN = HCC

Persistent Jobs
•  Today, I’ll be discussing a unique way we

create backfill at HCC using what we call
“persistent jobs”

•  We are sharing it because it’s an
unexpected combination of several
unique-to-Condor capabilities to solve a
problem that usually is solved by writing a
lot of other code.

Persistent Jobs - Motivation
•  What is a persistent job?

–  A single task which lasts longer than a single
batch job can run.

–  It is thus necessary to keep state between runs

•  If your cluster limits batch jobs to 12 hours, a
24 hour task would be a persistent job.

•  At a minimum, between runs, the persistent
job must keep some state – what job am I?
–  This could also be a quite large checkpoint!

Persistent Jobs - Examples
•  A few examples:

– Traditional Condor standard universe job that
uses checkpoints.

– Processing streams of data, where there is
one job per stream.

•  Taken to the extreme, a persistent job
might never exit.

•  We will show an example of persistent
jobs for grid backfill.

Persistent Jobs - Difficulties
•  Persistent jobs are difficult because:

–  We want no more than one instance running,
–  Prefer more than zero instances running.

•  To satisfy the first, we need some sort of
locking and heartbeat mechanisms.

•  To satisfy the second, we need something to
automatically re-queue.
–  And then something to monitor the automatic

submission framework.
•  Oh, and deadlock detection!

“Traditional Approach”
•  Keep the state in a database.

– Have a locking check-in/check-out
mechanisms to make sure checkpoints are
used by one job.

•  Have a server listening for job heartbeats
and update the DB.

•  Have a submit daemon.
•  A lot of infrastructure! At least three

services you have to write, care, and feed.

Yuck!
•  We just invented a ton of architecture.

– Too much for a grad student to write, much
less operate.

•  Distributed architectures are ripe for bugs.
– You can take a semester long course in this

and still not be very good at it.
•  Having a cron/daemon that submits jobs is

asking for a bug that submit an infinite # of
jobs or deadlocks and submits 0.

Persistent Jobs – the Condor Way!
•  Can we come up with a solution that:

– Uses Condor only
– Runs on grid (Grid Universe or Glide-in).
– Allows us to checkpoint.

•  Insight: Use the Condor Global Job ID
as the unique state!
– And Condor can re-run completed jobs!
– Don’t do book-keeping, let Condor do it for

you.

Persistent Jobs – the Condor Way!
•  The state kept by each job is the Condor Job ID.
•  Use the fact Condor can resubmit completed jobs.

–  Set “OnExitRemove = FALSE”
–  For Grid:

•  Globus_Resubmit = TRUE
•  Globus_Rematch = TRUE

•  Use the job ID to uniquely identify a checkpoint file kept
in a storage element.
–  Periodically overwrite with new checkpoints.

•  Sit back, and use the fact that Condor will keep trying to
re-run the job indefinitely and will make sure that the job
only has one running instance.

Our Use Case
•  We want to have an infinite amount of work

for our clusters.
–  Yet people will be mad if we just do sleep()

•  Solution: BOINC
–  Einstein@Home is an acceptable use of our

resources.
–  BOINC is a persistent job! As long as you feed it

the same checkpoint directory(*), it will continue to
run indefinitely!

•  Actually, it gets fed jobs internally, but we don’t know
anything about the job boundaries.

Our Solution
•  We take the basic BOINC binary, statically

compiled for RHEL4/32-bit for maximum
compatibility.

•  BOINC uses the md5sum of the host’s mac
address to identify the checkpoint directory is
correct between executions.
–  Replace use of mac address with the md5sum of the

Condor JobID!
–  Now, regardless of the worker node running the job,

the correct checkpoint is used.
•  Checkpoints (100MB each) kept on SRM

storage. No NFS used!

Data Flow

Worker/Boinc SRM - Nebraska

Checkpoints
1000 Jobs = 27MB/s

Initial Binary/
Checkpoint

Submit Host

Job Wrapper

Job Output

Workflow
Job Start

Download
Checkpoint
and Binary

Send
Checkpoint

Kill BOINC,
Exit Job

Time to
Chkpoint?

Run lifetime
over?

FORKED

YES

YES

RESUBMIT

Example Values:
Checkpoint = 1hr
Lifetime = 12hrs

KILL

Sleep

NO

NO

Boinc Results

Why not Condor backfill?
•  Why this and not use Condor backfill?

–  Not all of our sites run Condor. We want to be
able to utilize an arbitrary site.

•  Lots of exercise for operating grid components!

–  Standard backfill tied to physical worker node
(MAC). No clue when you will see that node again
on the grid, so you might just be throwing away
work. BOINC progress expires in 3 days.

–  Can’t push out backfill jobs using OSG-MM.
•  Possibly could do this for gWMS; I don’t know.

GlideinWMS Backfill
•  Keeping a Glide-in instance busy with

backfill until you get user jobs.
– Preempt backfill jobs for user jobs.
– Removes the user ‘ramp up’ time.

•  Use Flocking to GlideinWMS
– GlideinWMS is resource hungry, need

interactive nodes for deployment.
– Run Backfill to have running glideins for the

flocked jobs.

Future Uses
•  Where else could persistent jobs be

useful?
– Glidein Pilot Factory. Removes the need to

have processes that submit jobs.
•  If the thing stops working, then it’s a Condor bug,

and you have “someone else” to yell at. 

Conclusions
•  “Persistent jobs” can be a nightmare due

to the necessary bookkeeping.
•  Condor jobs can be made persistent.
•  Don’t go inventing things Condor does for

you.
•  By utilizing basic Condor and nothing else

(entire project is 2 python scripts), we can
generate an arbitrary amount of backfill for
our site or the OSG!

Back Page

Questions?

Code location:
svn://t2.unl.edu/brian/osg_boinc

Back Page

Backup Slides

Issues found during implementation
•  Rematching in grid universe

– Using matchmaking in grid universe
– Need special keyword:

•  GlobusRematch = TRUE

– Was a huge pain to get right.
•  Job accounting

–  Job accounting collects data when Condor job
finishes, not for each run.

– Not solved, relying on grid resource
accounting

Issues found during implementation
•  Need to easily modify existing jobs

–  In ‘Arguments’, use special variables:
•  $$([Variable])

– Variables evaluated at time of match
– Used for job lifetime, checkpoint location,

binary location

Results
•  Glideins running / Jobs Queued

Glidein Usage by Site

