
Condor Project
Computer Sciences Department
University of Wisconsin-Madison

Extending Condor

Condor Week 2010

Todd Tannenbaum

www.cs.wisc.edu/Condor 2

Some classifications

Application Program Interfaces
(APIs)
›  Job Control
›  Operational Monitoring

Extensions

www.cs.wisc.edu/Condor 3

Job Control APIs
The biggies:
› Command Line Tools
› Web Service Interface (SOAP)

http://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=SoapWisdom

› DRMAA
› Condor DBQ

www.cs.wisc.edu/Condor 4

Operational Monitoring APIs
›  Via Web Services (SOAP)
›  Via Relational Database: Quill

h Job, Machine, and Matchmaking data echoed
into PostgreSQL RDBMS

›  Via a file: the Event Log
h Structured journal of job events
h Sample code in C++ to read/parse these events

›  Via Enterprise messaging: Condor AMQP
h EventLog events echoed into Qpid
h Plug: Vidhya Murali’s talk tomorrow afternoon

www.cs.wisc.edu/Condor 5

Extending Condor
› APIs: How to

interface w/
Condor

› Extensions:
Changing Condor’s
behavior
h Hooks
h Plugins

www.cs.wisc.edu/Condor 6

Job Wrapper Hook
›  Allows an administrator to specify a

“wrapper” script to handle the execution of
all user jobs

›  Set via condor_config
“USER_JOB_WRAPPER”

›  Wrapper runs as the user, command-line
args are passed, machine & job ad is
available.

›  Errors can be propagated to the user.
›  Example: condor_limits_wrapper.sh

www.cs.wisc.edu/Condor 7

Job Fetch & Prepare Hooks
›  Job Fetch hooks

h Call outs from the condor_startd
h Extend claiming
h Normally jobs are pushed from schedd to

startd – now jobs can be “pulled” from
anywhere

›  Job Running Hooks
h Call outs from the condor_starter
h Transform the job classad
h Perform any other pre/post logic

www.cs.wisc.edu/Condor 8

What hooks are available?
›  Fetch Hooks (condor_startd):

h FETCH_JOB
h REPLY_FETCH
h EVICT_CLAIM

›  Running Hooks (condor_starter):
h PREPARE_JOB
h UPDATE_JOB_INFO
h JOB_EXIT

www.cs.wisc.edu/Condor 9

HOOK_FETCH_JOB
›  Invoked by the startd whenever it

wants to try to fetch new work
h FetchWorkDelay expression

› Hook gets a current copy of the slot
ClassAd

› Hook prints the job ClassAd to
STDOUT

›  If STDOUT is empty, there’s no work

www.cs.wisc.edu/Condor 10

HOOK_REPLY_FETCH
›  Invoked by the startd once it decides

what to do with the job ClassAd
returned by HOOK_FETCH_WORK

›  Gives your external system a chance
to know what happened

›  argv[1]: “accept” or “reject”
›  Gets a copy of slot and job ClassAds
›  Condor ignores all output
› Optional hook

www.cs.wisc.edu/Condor 11

HOOK_EVICT_CLAIM

›  Invoked if the startd has to evict a
claim that’s running fetched work

›  Informational only: you can’t stop or
delay this train once it’s left the
station

›  STDIN: Both slot and job ClassAds
›  STDOUT: > /dev/null

www.cs.wisc.edu/Condor 12

HOOK_PREPARE_JOB
›  Invoked by the condor_starter when

it first starts up (only if defined)
› Opportunity to prepare the job

execution environment
h Transfer input files, executables, etc.

›  INPUT: both slot and job ClassAds
› OUTPUT: ignored, but starter won’t

continue until this hook exits
› Not specific to fetched work

www.cs.wisc.edu/Condor 13

HOOK_UPDATE_JOB_INFO
›  Periodically invoked by the starter to

let you know what’s happening with the
job

›  INPUT: both ClassAds
h Job ClassAd is updated with additional

attributes computed by the starter:
•  ImageSize, JobState, RemoteUserCpu, etc.

› OUTPUT: ignored

www.cs.wisc.edu/Condor 14

HOOK_JOB_EXIT
›  Invoked by the starter whenever the

job exits for any reason
›  Argv[1] indicates what happened:

h “exit”: Died a natural death
h “evict”: Booted off prematurely by the

startd (PREEMPT == TRUE, condor_off,
etc)

h “remove”: Removed by condor_rm
h “hold”: Held by condor_hold

www.cs.wisc.edu/Condor 15

POP QUIZ!!!
Given

h Job Wrapper hook
h Job Fetch hooks
h Job Running hooks

Which one is
redundent?

Why?

Quiz? This is
so bogus
Mr. Todd!!

www.cs.wisc.edu/Condor 16

Sidebar: “Toppings”
h If work arrived via fetch

hook “foo”, then prepare
hooks “foo” will be used.

h What if an individual job
could specify a job prepare
hook to use???

h Prepare hook to use can be
alternatively specified in
job classad via attribute
“HookKeyword”

h How cool is that???

www.cs.wisc.edu/Condor 17

Toppings: Simple Example
›  In condor_config:

ANSYS_HOOK_PREPARE_JOB= \
 $(LIBEXEC)/ansys_prepare_hook.sh

›  Contents of ansys_prepare_hook.sh:
#!/bin/sh
#Read and discard the job classad
cat >/dev/null
echo'Cmd="/usr/local/bin/ansys"'

www.cs.wisc.edu/Condor 18

Topping Example, cont.

›  In job submit file:
 universe=vanilla

 executable=whatever
 arguments=…
 +HookKeyword=“ANSYS"
 queue

www.cs.wisc.edu/Condor 19

Job Router Hooks
 JOB_ROUTER_ENTRIES_CMD

 - read the routing table from an external program
 - optional periodic refresh

 <hookname>_HOOK_TRANSLATE
 - transform original job to "routed" job

 <hookname>_HOOK_UPDATE_JOB_INFO
 - periodically update routed job ClassAd

 <hookname>_HOOK_JOB_FINALIZE
 - handle job completion and update original job
ClassAd

 <hookname>_HOOK_JOB_CLEANUP
 - handle cleaning up when done managing job

www.cs.wisc.edu/Condor 20

Configuration Hook

›  Instead of reading from a file, run a
program to generate Condor config
settings

›  Append “|” to CONDOR_CONFIG or
LOCAL_CONFIG_FILE. Example:

 LOCAL_CONFIG_FILE = \

 /opt/condor/sbin/make_config

www.cs.wisc.edu/Condor

› Allows the administrator to configure
hooks for handling URLs during
Condor's file transfer

›  Enables transfer from third party
directly to execute machine, which can
offload traffic from the submit point

›  Can be used in a number of clever ways

File Transfer Hooks

www.cs.wisc.edu/Condor

File Transfer Hooks

› API is extremely simple
› Must support being invoked with the

“-classad” option to advertise its
abilities:

#!/bin/env perl

if ($ARGV[0] eq "-classad") {
 print "PluginType = \"FileTransfer\"\n";
 print "SupportedMethods = \"http,ftp,file\"\n";
 exit 0;
}

www.cs.wisc.edu/Condor

File Transfer Hooks

› When invoked normally, a plugin simply
transfers the URL (first argument)
into filename (second argument)
quoting could be an issue but this runs in user space

$cmd = "curl " . $ARGV[0] . " -o " . $ARGV[1];
system($cmd);
$retval = $?;

exit $retval;

www.cs.wisc.edu/Condor

File Transfer Hooks
›  In the condor_config file, the

administrator lists the transfer hooks
that can be used

›  Condor invokes each one to find out its
abilities

›  If something that looks like a URL is
added to the list of input files, the
plugin is invoked on the execute
machine

www.cs.wisc.edu/Condor

File Transfer Hooks

›  condor_config:
η FILETRANSFER_PLUGINS = curl_plugin,

hdfs_plugin, gdotorg_plugin, rand_plugin
›  Submit file:

η transfer_input_files = normal_file,
http://cs.wisc.edu/~zkm/data_file,
rand://1024/random_kilobyte

www.cs.wisc.edu/Condor

File Transfer Hooks

› As you can see, the format of the URL
is relatively arbitrary and is
interpreted by the hook

›  This allows for tricks like rand://,
blastdb://, data://, etc.

›  Currently a bug prevents this from
working for VMWare images but soon
we'll support vm:// as well.

www.cs.wisc.edu/Condor 27

Plugins

www.cs.wisc.edu/Condor 28

Plugins
›  Shared Library Plugins

h  Gets mapped right into the process space of
the Condor Services! May not block! Must be
thread safe!

h  General and ClassAd Functions
›  Condor ClassAd Function Plugin

h  Add custom built-in functions to the ClassAd
Language.

h  Via condor_config “CLASSAD_LIB_PATH”
h  Cleverly used by SAMGrid

www.cs.wisc.edu/Condor 29

General Plugins
›  In condor_config, use “PLUGINS” or

“PLUGIN_DIR”.
›  Very good idea to do:

h SUBSYSTEM.PLUGIN or
h SUBSYSTEM.PLUGIN_DIR

›  Implement C++ child class, and Condor will
call methods at the appropriate times.

›  Some general methods (initialize,
shutdown), and then callbacks based on
plugin type

›  What’s available? Plugin Discovery…

www.cs.wisc.edu/Condor 30

Plugin Discovery
cd src/
dir /s Example*Plugin.cpp
You will find:
 ExampleCollectorPlugin.cpp
 ExampleMasterPlugin.cpp
 ExampleNegotiatorPlugin.cpp
 ExampleClassAdLogPlugin.cpp
 ExampleScheddPlugin.cpp
 ExampleStartdPlugin.cpp
And a ClassAdLogPluginManager.cpp

www.cs.wisc.edu/Condor 31

Collector Plugin
struct ExampleCollectorPlugin : public CollectorPlugin
{

 void initialize();

 void shutdown();

 void update(int command, const ClassAd &ad);

 void invalidate(int command, const ClassAd &ad);
};

www.cs.wisc.edu/Condor 32

ClassAdLog Plugin Methods
 virtual void newClassAd(const char *key) = 0;
 virtual void destroyClassAd(const char *key) = 0;
 virtual void setAttribute(const char *key,
 const char *name,
 const char *value) = 0;
 virtual void deleteAttribute(const char *key,
 const char *name) = 0;

www.cs.wisc.edu/Condor 33

Other Extending Ideas…

www.cs.wisc.edu/Condor 34

Custom ClassAd Attributes

›  Job ClassAd
h +Name = Value in submit file
h SUBMIT_EXPRS in condor_config

› Machine ClassAd
h STARTD_EXPRS in condor_config for

static attributes
h STARTD_CRON_* settings in

condor_config for dynamic attributes

www.cs.wisc.edu/Condor 35

Thinking out of the box…

› MAIL in condor_config
› WINDOWS_SOFTKILL in

condor_config
›  Green Computing Settings

h HIBERNATION_PLUGIN (called by the
startd)

h ROOSTER_WAKEUP_CMD

www.cs.wisc.edu/Condor 36

All else fails? Grab Source!

Condor is
open
source ya
know…

Thank you! Questions?

www.cs.wisc.edu/Condor 37

Extra Slides

www.cs.wisc.edu/Condor 38

Web Service Interface

›  Simple Object Access Protocol
h Mechanism for doing RPC using XML
 (typically over HTTP or HTTPS)

h A World Wide Web Consortium (W3C)
standard

›  SOAP Toolkit: Transform a WSDL to
a client library

www.cs.wisc.edu/Condor 39

Benefits of a Condor SOAP
API

›  Can be accessed with standard web
service tools

›  Condor accessible from platforms
where its command-line tools are not
supported

›  Talk to Condor with your favorite
language and SOAP toolkit

www.cs.wisc.edu/Condor 40

Condor SOAP API
functionality

›  Get basic daemon info (version, platform)
›  Submit jobs
›  Retrieve job output
›  Remove/hold/release jobs
›  Query machine status
›  Advertise resources
›  Query job status

www.cs.wisc.edu/Condor 41

Getting machine status via
SOAP

Your program

SOAP library

queryStartdAds()

condor_collector

Machine List

SOAP
over HTTP

www.cs.wisc.edu/Condor 42

Lets get some details…

www.cs.wisc.edu/Condor 43

The API
›  Core API, described with WSDL, is

designed to be as flexible as possible
h File transfer is done in chunks
h Transactions are explicit

› Wrapper libraries aim to make
common tasks as simple as possible
h Currently in Java and C#
h Expose an object-oriented interface

www.cs.wisc.edu/Condor 44

Things we will cover

›  Condor setup
› Necessary tools
›  Job Submission
›  Job Querying
›  Job Retrieval
›  Authentication with SSL and X.509

www.cs.wisc.edu/Condor 45

Condor setup
›  Start with a working condor_config
›  The SOAP interface is off by default

h Turn it on by adding ENABLE_SOAP=TRUE
›  Access to the SOAP interface is denied by default

h Set ALLOW_SOAP and DENY_SOAP, they
work like ALLOW_READ/WRITE/…

h Example: ALLOW_SOAP=*/*.cs.wisc.edu

www.cs.wisc.edu/Condor 46

Necessary tools
›  You need a SOAP toolkit

h Apache Axis (Java) - http://ws.apache.org/axis/
h Microsoft .Net - http://microsoft.com/net/
h gSOAP (C/C++) - http://gsoap2.sf.net/
h ZSI (Python) - http://pywebsvcs.sf.net/
h SOAP::Lite (Perl) - http://soaplite.com/

›  You need Condor’s WSDL files
h Find them in lib/webservice/ in your Condor release

›  Put the two together to generate a client library
h $ java org.apache.axis.wsdl.WSDL2Java

condorSchedd.wsdl
›  Compile that client library

h $ javac condor/*.java!

All our
examples are
in Java using
Apache Axis

www.cs.wisc.edu/Condor 47

Client wrapper libraries
›  The core API has some complex spots
›  A wrapper library is available in Java and C#

h Makes the API a bit easier to use (e.g. simpler file
transfer & job ad submission)

h Makes the API more OO, no need to remember and
pass around transaction ids

›  We are going to use the Java wrapper library for our
examples
h You can download it from http://www.cs.wisc.edu/condor/

birdbath/birdbath.jar

www.cs.wisc.edu/Condor 48

Submitting a job
›  The CLI way…

universe = vanilla!
executable = /bin/cp!
arguments = cp.sub cp.worked!
should_transfer_files = yes!
transfer_input_files = cp.sub!
when_to_transfer_output = on_exit!
queue 1!

$ condor_submit cp.sub!

cp.sub:

Explicit bits

clusterid = X!
procid = Y!
owner = matt!
requirements = Z!

Implicit bits

www.cs.wisc.edu/Condor 49

Repeat to submit multiple
jobs in a single cluster

Repeat to submit multiple clusters

•  The SOAP way…
1. Begin transaction
2. Create cluster
3. Create job
4. Send files
5. Describe job
6. Commit transaction

Submitting a job

www.cs.wisc.edu/Condor 50

1. Begin transaction

2. Create cluster
3. Create job

4&5. Send files & describe job
6. Commit transaction

Schedd schedd = new Schedd(“http://…”);
Transaction xact =

schedd.createTransaction();
xact.begin(30);
int cluster = xact.createCluster();
int job = xact.createJob(cluster);
File[] files = { new File(“cp.sub”) };
xact.submit(cluster, job, “owner”,

UniverseType.VANILLA, “/bin/cp”,
“cp.sub cp.worked”, “requirements”,
null, files);

xact.commit();

Submission from Java

www.cs.wisc.edu/Condor 51

Schedd’s location

Max time between calls (seconds)

Job owner, e.g. “matt”

Requirements, e.g. “OpSys==\“Linux\””
Extra attributes, e.g. Out=“stdout.txt” or Err=“stderr.txt”

Schedd schedd = new Schedd(“http://…”);
Transaction xact =

schedd.createTransaction();
xact.begin(30);
int cluster = xact.createCluster();
int job = xact.createJob(cluster);
File[] files = { new File("cp.sub") };
xact.submit(cluster, job, “owner”,

UniverseType.VANILLA, “/bin/cp”,
“cp.sub cp.worked”, “requirements”,
null, files);

xact.commit();

Submission from Java

www.cs.wisc.edu/Condor 52

Querying jobs

›  The CLI way…
$ condor_q!

-- Submitter: localhost : <127.0.0.1:1234> : localhost
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 1.0 matt 10/27 14:45 0+02:46:42 C 0 1.8 sleep 10000
…

42 jobs; 1 idle, 1 running, 1 held, 1 unexpanded!

www.cs.wisc.edu/Condor 53

Also, getJobAds given a
constraint, e.g. “Owner==\“matt\””

String[] statusName = { “”, “Idle”, “Running”, “Removed”,
“Completed”, “Held” };

int cluster = 1;

int job = 0;

Schedd schedd = new Schedd(“http://…”);

ClassAd ad = new ClassAd(schedd.getJobAd(cluster, job));

int status = Integer.valueOf(ad.get(“JobStatus”));

System.out.println(“Job is “ + statusName[status]);

Querying jobs
›  The SOAP way from Java…

www.cs.wisc.edu/Condor 54

Retrieving a job

›  The CLI way..
›  Well, if you are submitting to a local

Schedd, the Schedd will have all of a job’s
output written back for you

›  If you are doing remote submission you
need condor_transfer_data, which
takes a constraint and transfers all files in
spool directories of matching jobs

www.cs.wisc.edu/Condor 55

Discover available files

Remote file

Local file

Retrieving a job
›  The SOAP way in Java…

int cluster = 1;
int job = 0;

Schedd schedd = new Schedd(“http://…”);

Transaction xact = schedd.createTransaction();

xact.begin(30);

FileInfo[] files = xact.listSpool(cluster, job);

for (FileInfo file : files) {

 xact.getFile(cluster, job, file.getName(), file.getSize(),
 new File(file.getName()));

}

xact.commit();

www.cs.wisc.edu/Condor 56

Authentication for SOAP
›  Authentication is done via mutual SSL

authentication
h Both the client and server have certificates and identify

themselves
›  It is not always necessary, e.g. in some controlled

environments (a portal) where the submitting
component is trusted

›  A necessity in an open environment -- remember
that the submit call takes the job’s owner as a
parameter
h Imagine what happens if anyone can submit to a

Schedd running as root…

www.cs.wisc.edu/Condor 57

Details on setting
up authenticated

SOAP over HTTPS

www.cs.wisc.edu/Condor 58

Authentication setup
›  Create and sign some certificates
›  Use OpenSSL to create a CA

h CA.sh -newca
›  Create a server cert and password-less key

h CA.sh -newreq && CA.sh -sign
h mv newcert.pem server-cert.pem
h openssl rsa -in newreq.pem -out server-key.pem

›  Create a client cert and key
h CA.sh -newreq && CA.sh -sign && mv

newcert.pem client-cert.pem && mv newreq.pem
client-key.pem

www.cs.wisc.edu/Condor 59

Authentication config
›  Config options…

h ENABLE_SOAP_SSL is FALSE by default
h <SUBSYS>_SOAP_SSL_PORT

•  Set this to a different port for each
SUBSYS you want to talk to over ssl, the
default is a random port

•  Example: SCHEDD_SOAP_SSL_PORT=1980
h SOAP_SSL_SERVER_KEYFILE is required and

has no default
•  The file containing the server’s certificate

AND private key, i.e. “keyfile” after
cat server-cert.pem server-key.pem >
keyfile!

www.cs.wisc.edu/Condor 60

Authentication config
›  Config options continue…

h SOAP_SSL_CA_FILE is required
•  The file containing public CA certificates

used in signing client certificates, e.g.
demoCA/cacert.pem

›  All options except SOAP_SSL_PORT have an
optional SUBSYS_* version
h For instance, turn on SSL for everyone except

the Collector with
•  ENABLE_SOAP_SSL=TRUE
•  COLLECTOR_ENABLE_SOAP_SSL=FALSE

www.cs.wisc.edu/Condor 61

One last bit of config
›  The certificates we generated have a principal name, which

is not standard across many authentication mechanisms
›  Condor maps authenticated names (here, principal names) to

canonical names that are authentication method independent
›  This is done through mapfiles, given by

SEC_CANONICAL_MAPFILE and SEC_USER_MAPFILE
›  Canonical map: SSL .*emailAddress=(.*)

@cs.wisc.edu.* \1
›  User map: (.*) \1
›  “SSL” is the authentication method, “.*emailAddress….*” is a

pattern to match against authenticated names, and “\1” is
the canonical name, in this case the username on the email in
the principal

www.cs.wisc.edu/Condor 62

HTTPS with Java
›  Setup keys…

h keytool -import -keystore truststore -trustcacerts -file
demoCA/cacert.pem

h openssl pkcs12 -export -inkey client-key.pem -in client-
cert.pem -out keystore

›  All the previous code stays the same, just set some
properties
h javax.net.ssl.trustStore, javax.net.ssl.keyStore,

javax.net.ssl.keyStoreType,
javax.net.ssl.keyStorePassword

h Example: java -Djavax.net.ssl.trustStore=truststore -
Djavax.net.ssl.keyStore=keystore -
Djavax.net.ssl.keyStoreType=PKCS12 -
Djavax.net.ssl.keyStorePassword=pass Example https://…

