
Condor Project
Computer Sciences Department
University of Wisconsin-Madison

Using Condor
An Introduction

Condor Week 2010

www.cs.wisc.edu/Condor

The Condor Project (Established ‘85)
› Research and Development in the Distributed
High Throughput Computing field
› Team of ~35 faculty, full time staff and
students
h Face software engineering challenges in a

distributed UNIX/Linux/NT environment
h Are involved in national and international grid

collaborations
h Actively interact with academic and commercial

entities and users
h Maintain and support large distributed production

environments
h Educate and train students

www.cs.wisc.edu/Condor

The Condor Team

www.cs.wisc.edu/Condor

Some free software produced
by the Condor Project

›  Condor System
›  VDT
› Metronome
›  ClassAd Library
›  DAGMan

›  GCB & CCB
›  MW
›  NeST / LotMan
›  And others… all as

open source

www.cs.wisc.edu/Condor

High-Throughput Computing
›  High-Throughput Computing:

h Allows for many computational tasks to be done
over a long period of time

h Concerned largely with the number of compute
resources that are available to people who wish
to use the system

h Very useful system for researchers and other
users who are more concerned with the number
of computations they can do over long spans of
time than they are with short-burst
computations

www.cs.wisc.edu/Condor

Condor

www.cs.wisc.edu/Condor

What is Condor?

›  Classic High-Throughput Computing
system

› An integral part of many computational
grids around the world

www.cs.wisc.edu/Condor

Full featured system
›  Flexible scheduling policy engine via

ClassAds
h Preemption, suspension, requirements,

preferences, groups, quotas, settable fair-share,
system hold…

›  Facilities to manage BOTH dedicated CPUs
(clusters) and non-dedicated resources
(desktops)

›  Transparent Checkpoint/Migration for many
types of serial jobs

›  No shared file-system required
›  Federate clusters w/ a wide array of Grid

Middleware

www.cs.wisc.edu/Condor

Full featured system
›  Workflow management (inter-dependencies)
›  Support for many job types – serial, parallel, etc.
›  Fault-tolerant: can survive crashes, network

outages, no single point of failure.
›  Development APIs: via SOAP / web services,

DRMAA (C), Perl package, GAHP, flexible command-
line tools, MW

›  Platforms:
h  Linux i386 / IA64 / X86-64 / PPC
h  Windows XP / Vista / 7
h  MacOS X
h  Solaris
h  HP-UX
h  AIX

www.cs.wisc.edu/Condor

The Problem
Our esteemed
scientist, while

visiting
Madison, needs
to run a “small”

simulation.

www.cs.wisc.edu/Condor

The Simulation
Run a

simulation of
the evolution
of the cosmos
with various
properties

www.cs.wisc.edu/Condor

The Simulation Details
Varying values for the value of:
h  G (the gravitational constant): 100 values

h  Rµν (the cosmological constant): 100 values
h  c (the speed of light): 100 values

h 100 × 100 × 100 = 1,000,000 jobs

www.cs.wisc.edu/Condor

Running the Simulation
Each simulation:
h Requires up to 4GB of RAM
h Requires 20MB of input
h Requires 2 – 500 hours of computing time
h Produces up to 10GB of output

Estimated total:
h 15,000,000 hours!
h 1,700 compute YEARS
h 10 Petabytes of output

www.cs.wisc.edu/Condor

NSF won’t fund the Blue
Gene that I requested.

www.cs.wisc.edu/Condor

While sharing a
beverage with some
colleagues, Carl asks
“Have you tried
Condor? It’s free,
available for you to
use, and you can use
our CHTC pool.
Condor's been used to
run billions and billions
of jobs.”

www.cs.wisc.edu/Condor

Condor and CHTC
›  Center for High Throughput Computing

h Approved in August 2006
h Numerous resources at its disposal to keep up

with the computational needs of UW Madison
h These resources are being funded by:

•  National Institute of Health (NIH)
•  Department of Energy (DOE)
•  National Science Foundation (NSF)
•  Various grants from the University itself

www.cs.wisc.edu/Condor

B240
One of the CTHC Clusters

www.cs.wisc.edu/Condor

But... Will my jobs be safe?
› No worries!!

h Condor will take care of your jobs for you
h Jobs are queued in a safe way

• More details later
h Condor will make sure that your jobs run,

return output, etc.
•  You can even specify what defines “OK”

h Like money in the (FDIC insured) bank

www.cs.wisc.edu/Condor

Condor will ...
›  Keep an eye on your jobs and will keep you

posted on their progress
›  Implement your policy on the execution

order of the jobs
›  Keep a log of your job activities
›  Add fault tolerance to your jobs
›  Implement your policy on when the jobs can

run on your workstation

www.cs.wisc.edu/Condor

Condor Doesn’t Play Dice
with My Universes!

www.cs.wisc.edu/Condor

Definitions
›  Job

h The Condor representation of your work (next slide)
›  Machine

h The Condor representation of computers and that can
perform the work

›  ClassAd
h Condor’s internal data representation

›  Match Making
h Matching a job with a machine “Resource”

›  Central Manager
h Central repository for the whole pool
h Performs job / machine matching, etc.

www.cs.wisc.edu/Condor

Job

›  Condor’s quanta of work
h Like a UNIX process
h Can be an element of a workflow

www.cs.wisc.edu/Condor

Jobs Have Wants & Needs

›  Jobs state their requirements and
preferencs:
h Requirements:

•  I require a Linux/x86 platform
h Preferences ("Rank"):

•  I prefer the machine with the most memory
•  I prefer a machine in the chemistry

department

www.cs.wisc.edu/Condor

Machines Do Too!
› Machines specify:

h Requirements:
•  Require that jobs run only when there is no

keyboard activity
• Never run jobs belonging to Dr. Heisenberg

h Preferences ("Rank"):
•  I prefer to run Albert’s jobs

h Custom Attributes:
•  I am a machine in the physics department

www.cs.wisc.edu/Condor

Condor ClassAds

www.cs.wisc.edu/Condor

What is a ClassAd?
›  Condor’s internal data representation

h Similar to a classified ad in a paper
•  Their namesake

h Represent an object & its attributes
•  Usually many attributes

h Can also describe what an object
matches with

www.cs.wisc.edu/Condor

ClassAd Types

›  Condor has many types of ClassAds
h A "Job Ad" represents your job to

Condor
h A "Machine Ad" represents the various

compute resources in your Condor pool
h Others represent other pieces of your

Condor pool

www.cs.wisc.edu/Condor

ClassAds Explained
›  ClassAds can contain a lot of details

h The job’s executable is “cosmos”
h The machine’s load average is 5.6

›  ClassAds can specify requirements
h My job requires a machine with Linux

›  ClassAds can specify preferences
h This machine prefers to run jobs from

the physics group

www.cs.wisc.edu/Condor

ClassAd Structure

›  ClassAds are:
h semi-structured
h user-extensible
h schema-free

›  ClassAd contents:
h Attribute = Value
h Attribute = Expression

www.cs.wisc.edu/Condor

The Pet Exchange
 Pet Ad
 Type = “Dog”
 Color = “Brown”
 Price = 75
 Sex = "Male"
 AgeWeeks = 8
 Breed = "Saint Bernard"
 Size = "Very Large"
 Weight = 27

 Buyer Ad
 . . .
 Requirements =
 (Type == “Dog”) &&
 (Price <= 100) &&
 (Size == "Large" ||
 Size == "Very Large")
 Rank =
 (Breed == "Saint Bernard")
 . . .

www.cs.wisc.edu/Condor

The Magic of Matchmaking
›  The Condor "match maker" matches Job Ads

with Machine Ads
h Requirements:

•  Enforces both machine AND job requirements
expressions

h Preferences:
•  Considers both job AND machine rank expressions

h Priorities:
•  Takes into account user and group priorities

www.cs.wisc.edu/Condor

Back to our Simulation..

www.cs.wisc.edu/Condor

Getting Started:
Submitting Jobs to Condor

›  Get access to submit host
›  Choose a “Universe” for your job
›  Make your job “batch-ready”

h Includes making your data available to your job
›  Create a submit description file
›  Run condor_submit to put your job(s) in the

queue
›  Relax while Condor manages and watches

over your job(s)

www.cs.wisc.edu/Condor

1.  Access to CHTC
(UW Specific)

› Send email to chtc@cs.wisc.edu
› An account will be set up for you
›  ssh into our submit head node:

h From UNIX / Linux:
• ssh einstein@submit.chtc.wisc.edu

h From Windows:
•  Install Putty or similar SSH client
•  Use Putty to ssh into submit.cht.wisc.edu

www.cs.wisc.edu/Condor

If You’re not at UW…

› Work with your Condor Administrator
to get access

›  Login to your Condor submit host…

www.cs.wisc.edu/Condor

2. Choose the “Universe”
›  Controls how Condor

handles jobs
›  Condors many

universes include:
h Vanilla
h Standard
h Grid
h Java
h Parallel
h VM

www.cs.wisc.edu/Condor

 Using the Vanilla Universe

•  Allows running almost
any “serial” job

•  Provides automatic
file transfer, etc.

•  Like vanilla ice cream
– Can be used in just

about any situation

www.cs.wisc.edu/Condor

Introducing:
Todd's Private Universe

www.cs.wisc.edu/Condor

3. Make your job batch-
ready

Must be able to run in
the background

•  No interactive input
•  No GUI/window clicks

– We don't need no
stinkin' mouse!

•  No music ;^)

www.cs.wisc.edu/Condor

Batch-Ready:
Input & Output

›  Job can still use STDIN, STDOUT, and
STDERR (the keyboard and the screen),
but files are used for these instead of
the actual devices

› Similar to UNIX shell:
$./myprogram <input.txt >output.txt

www.cs.wisc.edu/Condor

Make your Data Available

›  Condor can:
h Transfer your data files to your job
h Transfer your results files back from

your job
›  You need to:

h Put your data files in a place where
Condor can access them

www.cs.wisc.edu/Condor

4. Create a Submit
Description File

›  A plain ASCII text file
›  Condor does not care about file extensions

h Most people use ".sub" or ".submit", though
›  Tells Condor about your job:

h Which executable, universe, input, output and error
files to use, command-line arguments, environment
variables, any special requirements or preferences
(more on this later)

›  Can describe many jobs at once (a “cluster”),
each with different input, arguments, output,
etc.

www.cs.wisc.edu/Condor

Input, output & error files
›  Controlled by submit file settings
›  You can define the job’s standard input,

standard output and standard error:
h Read job’s standard input from “input_file”:

• Input = input_file
•  Shell equivalent: $ program <input_file

h Write job’s standard ouput to “output_file”:
• Output = output_file
•  Shell equivalent: $ program >output_file

h Write job’s standard error to “error_file”:
• Error = error_file
•  Shell equivalent: $ program 2>error_file

www.cs.wisc.edu/Condor

Simple Submit File

Simple condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = cosmos ·Job's executable
Output = cosmos.out ·Job's STDOUT
Input = cosmos.in ·Job's STDIN
Log = cosmos.log ·Log the job's activities
Queue ·Put the job in the queue!

www.cs.wisc.edu/Condor

Logging your Job's
Activities

›  Create a log of job events
› Add to submit description file:

log = cosmos.log

›  The Life Story of a Job
h Shows all events in the life of a job

› Always have a log file

www.cs.wisc.edu/Condor

Sample Condor User Log
000 (0101.000.000) 05/25 19:10:03 Job submitted from host:
<128.105.146.14:1816>

...

001 (0101.000.000) 05/25 19:12:17 Job executing on host:
<128.105.146.14:1026>

...

005 (0101.000.000) 05/25 19:13:06 Job terminated.

 (1) Normal termination (return value 0)

...

www.cs.wisc.edu/Condor

5. Submit the Job to Condor
›  Run condor_submit:

h Provide the name of the submit file you
have created on the command line:

h condor_submit:
•  Parses the submit file, checks for errors
•  Creates one or more job ad(s) that describes

your job(s)
• Hands the job ad(s) off to the schedd

$ condor_submit cosmos.submit

www.cs.wisc.edu/Condor

Example:
MyType = "Job"
TargetType = "Machine"
ClusterId = 1
ProcId = 0
IsPhysics = True
Owner = "einstein"
Cmd = "cosmos“
Requirements = (Arch == "INTEL")
…

The Job Ad
String

Number

Boolean

Boolean
Expression

www.cs.wisc.edu/Condor

[einstein@submit ~]$ condor_submit cosmos.submit-file
Submitting job(s).
2 job(s) submitted to cluster 100.
[einstein@submit ~]$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> : submit.chtc.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 sagan 7/22 14:19 172+21:28:36 H 0 22.0 checkprogress.cron
2.0 heisenberg 1/13 13:59 0+00:00:00 I 0 0.0 env
3.0 hawking 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
4.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
5.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
6.0 hawking 1/15 19:34 0+00:00:00 H 0 0.0 script.sh
...
96.0 bohr 4/5 13:46 0+00:00:00 I 0 0.0 c2b_dops.sh
97.0 bohr 4/5 13:46 0+00:00:00 I 0 0.0 c2b_dops.sh
98.0 bohr 4/5 13:52 0+00:00:00 I 0 0.0 c2b_dopc.sh
99.0 bohr 4/5 13:52 0+00:00:00 I 0 0.0 c2b_dopc.sh
100.0 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos
557 jobs; 402 idle, 145 running, 10 held
[einstein@submit ~]$

Submitting The Job

www.cs.wisc.edu/Condor

The Job Queue

›  condor_submit sends your job’s
ClassAd(s) to the schedd

›  The schedd (more details later):
h Manages the local job queue
h Stores the job in the job queue

•  Atomic operation, two-phase commit
•  “Like money in the (FDIC insured) bank”

›  View the queue with condor_q

www.cs.wisc.edu/Condor

submit.chtc.wisc.edu

CHTC Condor Pool

CHTC
submit

Einstein’s new job

Other user’s jobs

Condor
schedd

$ condor_submit

Job Ad

cosmos.sub

[einstein@submit ~]$ cm

Job
Queue

www.cs.wisc.edu/Condor

Condor File Transfer Lists
› Transfer_Input_Files

h List of files that you want Condor to
transfer to the execute machine

› Transfer_Output_Files
h List of files that you want Condor to

transfer from the execute machine
h If not specified, Condor will transfer

back all “new” files in the execute
directory

www.cs.wisc.edu/Condor

Condor File Transfer Controls
›  ShouldTransferFiles

h YES: Always transfer files to execution site
h NO: Always rely on a shared filesystem
h IF_NEEDED: Condor will automatically transfer

the files if the submit and execute machine are
not in the same FileSystemDomain (Use
shared file system if available)

›  When_To_Transfer_Output
h ON_EXIT: Transfer the job's output files back

to the submitting machine only when the job
completes

h ON_EXIT_OR_EVICT: Like above, but also
when the job is evicted

www.cs.wisc.edu/Condor

Simple File Transfer Example

Example submit file using file transfer
Universe = vanilla
Executable = cosmos
Log = cosmos.log
ShouldTransferFiles = IF_NEEDED
Transfer_input_files = cosmos.dat
Transfer_output_files = results.dat
When_To_Transfer_Output = ON_EXIT
Queue

www.cs.wisc.edu/Condor

Need Command Line Args?

Example submit file with command line arguments
Universe = vanilla
Executable = cosmos
Arguments = -c 299792458 –G 6.67300e-112 -f cosmos.dat
log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Queue

›  You can specify command line
arguments to pass to your program
with the arguments directive:
arguments = -arg1 -arg2 foo

www.cs.wisc.edu/Condor

InitialDir

Example submit input file with InitialDir
Universe = vanilla
InitialDir = /home/einstein/cosmos/run
Executable = cosmos ·NOT Relative to InitialDir
Log = cosmos.log ·Is Relative to InitialDir
Input = cosmos.in ·Is Relative to InitialDir
Output = cosmos.out ·Is Relative to InitialDir
Error = cosmos.err ·Is Relative to InitialDir
TransferInputFiles=cosmos.dat ·Is Relative to InitialDir
Arguments = -f cosmos.dat
Queue

›  With InitialDir, you can give jobs a directory with
respect to file input and output.

›  Also provides a directory (on the submit machine) for the
user log, when a full path is not specified.

›  Executable is not relative to InitialDir

www.cs.wisc.edu/Condor

Need More Feedback?
•  Condor sends email

about job events to the
submitting user

•  Specify “notification”
in your submit file to
control which events:

Default
Notification = complete
Notification = never
Notification = error
Notification = always

www.cs.wisc.edu/Condor

Jobs, Clusters, and Processes
›  If your submit file describes multiple jobs, we call

this a “cluster”
›  Each cluster has a “cluster number”

h The cluster number is unique to the schedd
›  Each individual job in a cluster is called a “process”

h  Process numbers always start at zero
›  A Condor “Job ID” is the cluster number, a period,

and the process number (i.e. 2.1)
h A cluster can have a single process

•  Job ID = 20.0 ·Cluster 20, process 0
h Or, a cluster can have more than one process

•  Job IDs: 21.0, 21.1, 21.2 ·Cluster 21, process 0, 1, 2

www.cs.wisc.edu/Condor

Submit File for a Cluster
Example submit file for a cluster of 2 jobs
with separate input, output, error and log files
Universe = vanilla
Executable = cosmos

Arguments = -f cosmos_0.dat
log = cosmos_0.log
Input = cosmos_0.in
Output = cosmos_0.out
Error = cosmos_0.err
Queue ·Job 102.0 (cluster 102, process 0)

Arguments = -f cosmos_1.dat
log = cosmos_1.log
Input = cosmos_1.in
Output = cosmos_1.out
Error = cosmos_1.err
Queue ·Job 102.1 (cluster 102, process 1)

www.cs.wisc.edu/Condor

[einstein@submit ~]$ condor_submit cosmos.submit-file
Submitting job(s).
2 job(s) submitted to cluster 101.
[einstein@submit ~]$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> : submit.chtc.wisc.edu
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 sagan 7/22 14:19 172+21:28:36 H 0 22.0 checkprogress.cron
2.0 heisenberg 1/13 13:59 0+00:00:00 I 0 0.0 env
3.0 hawking 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
4.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
5.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
6.0 hawking 1/15 19:34 0+00:00:00 H 0 0.0 script.sh
...
102.0 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos –f cosmos.dat
102.1 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos –f cosmos.dat

557 jobs; 402 idle, 145 running, 10 held

[einstein@submit ~]$

Submitting The Job

www.cs.wisc.edu/Condor

1,000,000 jobs...
›  We could put all input, output, error & log

files in the one directory
h One of each type for each job
h 4,000,000+ files (4 files × 1,000,000 jobs)
h Submit file: 6,000,000+ lines, ~128M
h Difficult (at best) to sort through

›  Better: Create a subdirectory for each run
h Take advantage of InitialDir directive

www.cs.wisc.edu/Condor

Organize your files and
directories for big runs

›  Create subdirectories for each “run”
h run_0, run_1, … run_999999

›  Create input files in each of these
h run_0/(cosmos.in,cosmos.dat)
h run_1/(cosmos.in,cosmos.dat)
h …
h run_999999/(cosmos.in,cosmos.dat)

›  The output, error & log files for each job
will be created by Condor from your job’s
output

www.cs.wisc.edu/Condor

More Data Files
› Move the values of G, c & Rµν for

each run to a data file
h Let’s call it cosmos.in
h Each run directory would contain a

unique cosmos.in file
›  The common cosmos.dat file could

be shared by all jobs
h Can be symlinks to a common file

www.cs.wisc.edu/Condor

cosmos.in files
›  These cosmos.in files can easily be

generated programmatically using Python
or Perl

run_0/cosmos.in
c = 299792408
G = 6.67300e-112
R = 10.00e−29

run_1/cosmos.in
c = 299792409
G = 6.67300e-112
R = 10.00e−29

run_999999/cosmos.in
c = 299792508
G = 6.67300e-100
R = 10.50e−29

…

run_999998/cosmos.in
c = 299792508
G = 6.67300e-100
R = 10.49e−29

www.cs.wisc.edu/Condor

Einstein’s simulation directory
cosmos

cosmos.sub

cosmos.dat

run_999999

run_0
User or
script

creates
black files

Condor
creates

purple files
for you

cosmos.in
cosmos.dat ·(symlink)

cosmos.in
cosmos.dat ·(symlink)

cosmos.out

cosmos.err

cosmos.log

cosmos.out

cosmos.err

cosmos.log

www.cs.wisc.edu/Condor

Submit Description File for
1,000,000 Jobs

Cluster of 1,000,000 jobs with different directories
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Output = cosmos.out
Input = cosmos.in
Arguments = –f cosmos.dat
TransferInputFiles = cosmos.dat
...

InitialDir = run_0 ·Log, input, output & error files -> run_0
Queue ·Job 103.0 (Cluster 103, Process 0)
InitialDir = run_1 ·Log, input, output & error files -> run_1
Queue ·Job 103.1 (Cluster 103, Process 1)

·Do this 999,998 more times…………

www.cs.wisc.edu/Condor

Submit File for a Big Cluster
of Jobs

› We just submitted 1 cluster with
1,000,000 processes

› All the input/output files will be in
different directories

›  The submit file still is pretty unwieldy
h 2,000,000+ lines, ~32M

›  Isn’t there a better way?

www.cs.wisc.edu/Condor

The Better Way
›  We can queue all 1,000,000 in 1 “Queue”

directive
h Queue 1000000

›  Condor provides $(Process) and $(Cluster)
h $(Process) will be expanded to the process

number for each job in the cluster
•  0, 1, … 999999

h $(Cluster) will be expanded to the cluster
number

•  Will be the same for all jobs in the cluster
•  104 in our example

www.cs.wisc.edu/Condor

Using $(Process)
›  The initial directory for each job can be

specified using $(Process)
h InitialDir = run_$(Process)
h Condor will expand these to:

•  “run_0”, “run_1”, … “run_999999” directories
› Similarly, arguments can be variable

h Arguments = -n $(Process)
h Condor will expand these to:

• “-n 0”, “-n 1”, … “-n 999999”

www.cs.wisc.edu/Condor

Better Submit File for
1,000,000 Jobs

Example condor_submit input file that defines
a cluster of 100000 jobs with different directories
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Arguments = –f cosmos.dat ·All share arguments
InitialDir = run_$(Process) ·run_0 … run_999999
Queue 1000000 ·Jobs 104.0 … 104.999999

www.cs.wisc.edu/Condor

Now, we submit it…
[einstein@submit ~]$ condor_submit cosmos.submit
Submitting job

(s) ..
..
..
..
..
...................

Logging submit event
(s) ..
..
..
..
..
...................

1000000 job(s) submitted to cluster 104.

www.cs.wisc.edu/Condor

Check the Job Queue
[einstein@submit ~]$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> :

submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
104.0 einstein 4/20 12:08 0+00:00:05 R 0 9.8 cosmos –f cosmos.dat
104.1 einstein 4/20 12:08 0+00:00:03 I 0 9.8 cosmos –f cosmos.dat
104.2 einstein 4/20 12:08 0+00:00:01 I 0 9.8 cosmos –f cosmos.dat
104.3 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos –f cosmos.dat
...
104.999998 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos –f cosmos.dat
104.999999 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos –f cosmos.dat

999999 jobs; 999998 idle, 1 running, 0 held

www.cs.wisc.edu/Condor

CHTC Condor Pool

CHTC
submit

Einstein’s jobs
Other user’s jobs

submit.chtc.wisc.edu

Condor
schedd

Job
Queue

$ condor_submit

Job Ad Job Ad Job Ad

cosmos.sub

cm.chtc.
wisc.edu

[einstein@submit ~]$

www.cs.wisc.edu/Condor

6. Relax
›  Condor is watching over

your jobs
h Will restart them if

required, etc.
›  While I’m waiting…

h Is there more that I can
do with Condor?

www.cs.wisc.edu/Condor

Oh <censored>!!!
My Biggest Blunder Ever

›  Albert removes Rµν
(Cosmological Constant)
from his equations, and
needs to remove his
running jobs

›  We’ll just ignore that
modern cosmologists
may have re-introduced
Rµν (so called “dark
energy”)

www.cs.wisc.edu/Condor

Removing Jobs
›  If you want to remove a job from the

Condor queue, you use condor_rm
›  You can only remove jobs that you own
›  Privileged user can remove any jobs

h “root” on UNIX
h “administrator” on Windows

www.cs.wisc.edu/Condor

Removing jobs (continued)
›  Remove an entire cluster:

h condor_rm 4 ·Removes the whole cluster

›  Remove a specific job from a cluster:
h condor_rm 4.0 ·Removes a single job

› Or, remove all of your jobs with “-a”
h condor_rm -a ·Removes all jobs / clusters

www.cs.wisc.edu/Condor

How can I tell Condor that
my jobs are Physics related?

›  In the submit description file, introduce an
attribute for the job
+Department = “physics”

 Causes the Job Ad to contain
Department = “physics”

›  Machines can be configured to:
h Give higher rank to physics jobs
h Pre-empt non-physics jobs when a physics job comes

along
h See Alan's "Administering Condor" tutorial for more

about machine "policy expressions"

www.cs.wisc.edu/Condor

How Can I Control Where
my Jobs Run?

› Some of the machines in the pool can’t
successfully run my jobs
h Not enough RAM
h Not enough scratch disk space
h Required software not installed
h Etc.

www.cs.wisc.edu/Condor

Specify Job Requirements
›  A boolean expression (syntax similar to C or Java)
›  Must evaluate to True for a match to be made

Universe = vanilla
Executable = cosmos
Log = cosmos.log
InitialDir = run_$(Process)
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Requirements = ((Memory >= 4096) && \
 (Disk > 10000))

Queue 1000000

www.cs.wisc.edu/Condor

Advanced Requirements
›  Requirements can match custom attributes in your

Machine Ad
h Can be added by hand to each machine
h Or, automatically using the “Hawkeye” mechanism

Universe = vanilla
Executable = cosmos
Log = cosmos.log
InitialDir = run_$(Process)
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err
Requirements = ((Memory >= 4096) && \
 (Disk > 10000) && \
 (CosmosData =!= UNDEFINED))

Queue 1000000

www.cs.wisc.edu/Condor

CosmosData =!= UNDEFINED ???
›  What’s this “=!=” and “UNDEFINED” business?

h Is this like the state of Schrödinger’s Cat?
›  Introducing ClassAd Meta Operators:

h Allow you to test if a attribute is in a ClassAd
h Is identical to operator: “=?=”
h Is not identical to operator: “=!=”
h Behave similar to == and !=, but are not strict
h Somewhat akin to Python’s “is NONE” and “is not NONE”
h Without these, ANY expression with an UNDEFINED in it

will always evaluate to UNDEFINED

www.cs.wisc.edu/Condor

Meta Operator Examples

Expression Evaluates to
10 == UNDEFINED UNDEFINED

UNDEFINED == UNDEFINED UNDEFINED

10 =?= UNDEFINED False

UNDEFINED =?= UNDEFINED True

UNDEFINED =!= UNDEFINED False

www.cs.wisc.edu/Condor

More Meta Operator Examples
Expression X Evaluates to

X == 10

10 True
5 False

“ABC” ERROR
* UNDEFINED

X =!= UNDEFINED

5 True
10 True

“ABC” True
* False

*: X is not present in the ClassAd

www.cs.wisc.edu/Condor

One Last Meta Example
Expression X Evaluates to

((X =!= UNDEFINED) &&
 (X == 10))
Is logically equivalent to:
 (X =?= 10)

10 True
5 False
11 False
* False

((X =?= UNDEFINED) ||
 (X != 10))
Is logically equivalent to:
 (X =!= 10)

10 False

5 True

11 True

* True

*: X is not present in the ClassAd

www.cs.wisc.edu/Condor

Using Attributes from the Machine Ad
›  You can use attributes from the matched

Machine Ad in your job submit file
η  $$(<attribute>) will be replaced by the value

of the specified attribute in the Machine Ad
›  Example:

η  Matching Machine Ad has:
CosmosData = "/local/cosmos/data"

η  Submit file has:
Executable = cosmos
Requirements = (CosmosData =!= UNDEFINED)
Arguments = -d $$(CosmosData)

η  Resulting command line:
cosmos –d /local/cosmos/data

www.cs.wisc.edu/Condor

Specify Job Rank
›  Rank:

h Numerical expression
h All matches which meet the requirements can be sorted

by preference with a Rank expression..
h Higher values match first

Universe = vanilla
Executable = cosmos
Log = cosmos.log
Arguments = -arg1 –arg2
InitialDir = run_$(Process)
Requirements = (Memory >= 4096) && (Disk > 10000)
Rank = (KFLOPS*10000) + Memory
Queue 1000000

www.cs.wisc.edu/Condor

Need More Control of Your
Job?

›  Exit status isn't always a good
indicator of job success

› What if my job gets a signal?
h SIGSEGV
h SIGBUS

›  ...

www.cs.wisc.edu/Condor

Job Policy Expressions
›  User can supply job policy expressions in

the submit file.
›  Can be used to describe a successful run.

 on_exit_remove = <expression>
 on_exit_hold = <expression>
 periodic_remove = <expression>
 periodic_hold = <expression>

www.cs.wisc.edu/Condor

Job Policy Examples
› Do not remove if exits with a signal:

on_exit_remove = ExitBySignal == False

›  Place on hold if exits with nonzero status
or ran for less than an hour:
on_exit_hold =
 ((ExitBySignal==False) && (ExitSignal != 0)) ||
 ((ServerStartTime - JobStartDate) < 3600)

›  Place on hold if job has spent more than
50% of its time suspended:
periodic_hold =
 (CumulativeSuspensionTime >
 (RemoteWallClockTime / 2.0))

www.cs.wisc.edu/Condor

How can my jobs access
their data files?

www.cs.wisc.edu/Condor

Access to Data in Condor
›  Condor can transfer files

h We’ve already seen examples of this
h Can automatically send back changed files
h Atomic transfer of multiple files
h Can be encrypted over the wire

›  NFS / AFS
›  HDFS
›  Remote I/O Socket (parrot)
›  Standard Universe can use remote system

calls (more on this later)

www.cs.wisc.edu/Condor

NFS / AFS
›  Condor can be configured to allow access to

NFS and AFS shared resources
›  AFS is available on most of CHTC
›  Your program can access /afs/...
›  Note: Condor runs without AFS credentials

h At UW Computer Sciences, you must grant
net:cs access to all Condor job input, output, and
log files stored in AFS directories.

h Elsewhere, you'll have to do something similar

www.cs.wisc.edu/Condor

I Need to run
LOTS of Short Jobs

›  Condor is a High Throughput system,
designed for long running jobs

›  Starting a job in Condor is somewhat
expensive

›  There are some configuration
parameters that may be able to help
h Contact a Condor staff person for more

www.cs.wisc.edu/Condor

What else can I do to run my
Short Jobs with Condor?

›  Batch your short jobs together
h Write a wrapper script that will run a

number of them in series
h Submit your wrapper script as your job

›  Explore Condor’s parallel universe

www.cs.wisc.edu/Condor

Need to Learn Scripting?
›  CS 368 / Summer 2010
›  Introduction to Scripting Languages
›  Two Sections

h Both taught by Condor Staff Members
h Section 1

•  Perl
•  Instructor: Tim Cartwright

h Section 2
•  Python
•  Instructor: Nick LeRoy

www.cs.wisc.edu/Condor

Parallel Universes

www.cs.wisc.edu/Condor

MW: A Master-Worker Grid
Toolkit

›  Provides a mechanism for controlling
parallel algorithms
h Fault tolerant
h Allows for resources to come and go
h Ideal for Computational Grid settings

›  To use, write your software using the MW
API

›  http://www.cs.wisc.edu/condor/mw/

www.cs.wisc.edu/Condor

MPI jobs
Example condor_submit input file that for MPI
jobs
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

www.cs.wisc.edu/Condor

Map Reduce
›  Condor provides a powerful execution

environment for running parallel
applications like MPI.
h The Parallel Universe (PU) of Condor is built

specifically for this purpose
h The Map-Reduce (MR) is a relatively recent

programming model particularly suitable for
applications that require processing a large set
of data on cluster of computers.

h A popular open-source implementation of MR
framework is provided by Hadoop project by
apache software foundation.

www.cs.wisc.edu/Condor

Map Reduce On Condor
›  Uses Condor’s Parallel Universe resource manager

to select a subset of machines within a cluster
h Sets up a Hadoop MR cluster on these machines
h Submits a MR job and clean-up once the job is finished
h These machines will be available as dedicated resources

for the duration of the job
h User can choose which machine should act as a master

and communication channels between masters and slave
nodes are also established

›  http://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=MapReduce

www.cs.wisc.edu/Condor

Accessing Large Data Sets
via HDFS

›  HDFS
h Allows disk space to be pooled into one resource
h For the CS CHTC cluster, that is on the order

of a couple hundred terabytes
›  Can enable jobs with large I/O to run

without filling up the spool on submit
machine

›  However, HDFS has no security so cannot
yet be used for sensitive data

www.cs.wisc.edu/Condor

HDFS @ CHTC
›  HDFS on CHTC

h Managed by the condor_hdfs daemon which runs under
the condor_master

›  Command line tools are available to move files in and
out of the HDFS

›  Soon, Condor will support having the SPOOL
directory in HDFS

›  Plugins for Condor’s file transfer will also support
HDFS

›  We're looking into the possibility of an overlay
network to solve the security issues.
h Any of Condor's security mechanisms could then be used

www.cs.wisc.edu/Condor

We’ve seen how Condor can:

›  Keep an eye on your jobs
η Keep you posted on their progress

›  Implement your policy on the
execution order of the jobs

›  Keep a log of your job activities

www.cs.wisc.edu/Condor

Using Condor
 An Introduction

Part II
Condor Week 2010

www.cs.wisc.edu/Condor

More Issues...

› We need more disk space for our jobs
› We have users that come and go

www.cs.wisc.edu/Condor

Your own Submit Host

›  Benefits:
h As much disk space as you need
h Manage your own users

›  Getting Started:
h Download & install appropriate Condor

binaries
h "Flock" into CHTC and other campus pools

www.cs.wisc.edu/Condor

Getting Condor
›  Available as a free download from

 http://www.cs.wisc.edu/condor
›  Download Condor for your operating system

h Available for most modern UNIX platforms
(including Linux and Apple’s OS/X)

h Also for Windows XP / 2003 / Vista
›  Repositories

h YUM: RHEL 4 & 5
• $ yum install condor

h APT: Debian 4 & 5
• $ apt-get install condor

www.cs.wisc.edu/Condor

Condor Releases
›  Stable / Developer Releases

h Version numbering scheme similar to that of the (pre 2.6)
Linux kernels …

›  Major.minor.release
h If minor is even (a.b.c): Stable series

•  Very stable, mostly bug fixes
•  Current: 7.4
•  Examples: 7.2.5, 7.4.2

–  7.4.2 just released
h If minor is odd (a.b.c): Developer series

•  New features, may have some bugs
•  Current: 7.5
•  Examples: 7.3.2, 7.5.1

–  7.5.1 just released

www.cs.wisc.edu/Condor

Condor Installation

› Albert’s sysadmin installs Condor
h This new submit / manager machine
h On department desktop machines

•  Submission points
• Non-dedicated excution machines

–  Configured to only run jobs when the machine is idle
h Enables flocking to CHTC and other

campus pools

www.cs.wisc.edu/Condor

Flocking?

•  Flocking is a Condor-
specific technology

•  Allows Condor jobs to
run in other friendly
Condor pools

•  Needs to be setup on
both ends

•  Can be bi-directional

www.cs.wisc.edu/Condor

Flocking to CHTC

CHTC
submit

Einstein’s jobs
Other user’s jobs

cosmos.phys.wisc.edu

Condor
schedd

Job
Queue

$ condor_submit

Job Ad Job Ad Job Ad

cosmos.sub
cm.chtc.
wisc.edu

einstein@cosmos:~ $

www.cs.wisc.edu/Condor

We STILL Need More
Condor is managing and running our

jobs, but:
 Our CPU requirements are greater

than our resources
  Jobs are preempted more often than

we like

www.cs.wisc.edu/Condor

Happy Day! The Physics
Department is adding a

cluster!

•  The administrator installs Condor on all
these new dedicated cluster nodes

www.cs.wisc.edu/Condor

Adding dedicated nodes
›  The administrator installs Condor on these

new machines, and configures them with his
machine as the central manager
h The central manager:

•  Central repository for the whole pool
•  Performs job / machine matching, etc.

›  These are dedicated nodes, meaning that
they're always able run Condor jobs

www.cs.wisc.edu/Condor

Flocking to CHTC

CS CHTC Lab
submit

Einstein’s jobs Other user’s jobs

cm.chtc.
wisc.edu

Physics CHTC Lab
submit cm.physics

.wisc.edu

www.cs.wisc.edu/Condor

Some Good Questions…

•  What are all of
these Condor
Daemons running
on my machine?

•  What do they do?

www.cs.wisc.edu/Condor

Condor Daemon Layout

Personal Condor / Central Manager

Master

collector

negotiator

startd

= Process Spawned

schedd

www.cs.wisc.edu/Condor

condor_master
›  Starts up all other Condor daemons
›  Runs on all Condor hosts
›  If there are any problems and a daemon

exits, it restarts the daemon and sends email
to the administrator

›  Acts as the server for many Condor remote
administration commands:
h condor_reconfig, condor_restart
h condor_off, condor_on
h condor_config_val
h  etc.

www.cs.wisc.edu/Condor

Central Manager:
condor_collector

›  Central manager: central repository and match
maker for whole pool

›  Collects information from all other Condor daemons
in the pool
h “Directory Service” / Database for a Condor pool
h Each daemon sends a periodic update ClassAd to the

collector
›  Services queries for information:

h Queries from other Condor daemons
h Queries from users (condor_status)

›  Only on the Central Manager(s)
›  At least one collector per pool

www.cs.wisc.edu/Condor

Condor Pool Layout: Collector
= ClassAd
 Communication
 Pathway

= Process Spawned
Central Manager

Master

Collector

negotiator

www.cs.wisc.edu/Condor

Central Manager:
condor_negotiator

›  Performs “matchmaking” in Condor
›  Each “Negotiation Cycle” (typically 5 minutes):

h Gets information from the collector about all available
machines and all idle jobs

h Tries to match jobs with machines that will serve them
h Both the job and the machine must satisfy each other’s

requirements
›  Only one Negotiator per pool

h Ignoring HAD
›  Only on the Central Manager(s)

www.cs.wisc.edu/Condor

Condor Pool Layout: Negotiator
= ClassAd
 Communication
 Pathway

= Process Spawned
Central Manager

Master

Collector

negotiator

www.cs.wisc.edu/Condor

Execute Hosts:
condor_startd

›  Execute host: machines that run user jobs
›  Represents a machine to the Condor

system
›  Responsible for starting, suspending, and

stopping jobs
›  Enforces the wishes of the machine owner

(the owner’s “policy”… more on this in the
administrator’s tutorial)

›  Creates a “starter” for each running job
›  One startd runs on each execute node

www.cs.wisc.edu/Condor

Condor Pool Layout: startd
= ClassAd
 Communication
 Pathway

= Process Spawned

Central Manager

Master

Collector
schedd

negotiator
Cluster Node

Master

startd

Cluster Node
Master

startd

Workstation
Master

startd
schedd

Workstation
Master

startd
schedd

www.cs.wisc.edu/Condor

Submit Hosts:
condor_schedd

›  Submit hosts: machines that users can submit jobs on
›  Maintains the persistent queue of jobs
›  Responsible for contacting available machines and

sending them jobs
›  Services user commands which manipulate the job

queue:
h condor_submit, condor_rm, condor_q, condor_hold,

condor_release, condor_prio, …
›  Creates a “shadow” for each running job
›  One schedd runs on each submit host

www.cs.wisc.edu/Condor

Condor Pool Layout: schedd
= ClassAd
 Communication
 Pathway

= Process Spawned

Cluster Node
Master

startd

Cluster Node
Master

startd

Central Manager

Master

Collector
schedd

negotiator

Workstation
Master

startd
schedd

Workstation
Master

startd
schedd

www.cs.wisc.edu/Condor

Condor Pool Layout: master
= ClassAd
 Communication
 Pathway

= Process Spawned

Central Manager

Master

Collector
schedd

negotiator
Cluster Node

Master

startd

Cluster Node
Master

startd

Cluster Node
Master

startd
schedd

Cluster Node
Master

startd
schedd

www.cs.wisc.edu/Condor

What about these
“condor_shadow” processes?
›  The Shadow processes are Condor’s

local representation of your running
job
h One is started for each job

› Similarly, on the “execute” machine, a
condor_starter is run for each job

www.cs.wisc.edu/Condor

Condor Pool Layout: running a job
= Communication
 Pathway

= Process Spawned Submit Host

Master

schedd

shadow shadow

Execute Host

Master

startd

starter starter

Job Job

Execute Host

Master

startd

starter

Job

shadow

www.cs.wisc.edu/Condor

My jobs aren’t running!!

www.cs.wisc.edu/Condor

Check the queue
›  Check the queue with condor_q:
[einstein@submit ~]$ condor_q
-- Submitter: x.cs.wisc.edu : <128.105.121.53:510> :x.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
5.0 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 0
5.1 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 1
5.2 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 2
5.3 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 3
5.4 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 4
5.5 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 5
5.6 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 6
5.7 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos -arg1 –n 7
6.0 einstein 4/20 13:22 0+00:00:00 H 0 9.8 cosmos -arg1 –arg2
8 jobs; 8 idle, 0 running, 1 held

www.cs.wisc.edu/Condor

Look at jobs on hold
[einstein@submit ~]$ condor_q –hold
-- Submiter: submit.chtc.wisc.edu :

<128.105.121.53:510> :submit.chtc.wisc.edu
 ID OWNER HELD_SINCE HOLD_REASON
 6.0 einstein 4/20 13:23 Error from starter

on skywalker.cs.wisc.edu

9 jobs; 8 idle, 0 running, 1 held

Or, See full details for a job
[einstein@submit ~]$ condor_q –l 6.0

www.cs.wisc.edu/Condor

Check Machine's Status
[einstein@submit ~]$ condor_status
Name OpSys Arch State Activity LoadAv Mem ActvtyTime
slot1@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 4599 0+00:10:13
slot2@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 1+19:10:36
slot3@c002.chtc.wi LINUX X86_64 Claimed Busy 0.990 1024 1+22:42:20
slot4@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:22:10
slot5@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:17:00
slot6@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:09:14
slot7@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+19:13:49
...
vm1@INFOLABS-SML65 WINNT51 INTEL Owner Idle 0.000 511 [Unknown]
vm2@INFOLABS-SML65 WINNT51 INTEL Owner Idle 0.030 511 [Unknown]
vm1@INFOLABS-SML66 WINNT51 INTEL Unclaimed Idle 0.000 511 [Unknown]
vm2@INFOLABS-SML66 WINNT51 INTEL Unclaimed Idle 0.010 511 [Unknown]
vm1@infolabs-smlde WINNT51 INTEL Claimed Busy 1.130 511 [Unknown]
vm2@infolabs-smlde WINNT51 INTEL Claimed Busy 1.090 511 [Unknown]
 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/WINNT51 104 78 16 10 0 0 0
 X86_64/LINUX 759 170 587 0 0 1 0

 Total 863 248 603 10 0 1 0

www.cs.wisc.edu/Condor

Look in the Job Log
›  Look in your job log for clues:

[einstein@submit ~]$ cat cosmos.log
000 (031.000.000) 04/20 14:47:31 Job submitted from

host: <128.105.121.53:48740>
...
007 (031.000.000) 04/20 15:02:00 Shadow exception!
 Error from starter on gig06.stat.wisc.edu:

Failed to open '/scratch.1/einstein/workspace/v67/
condor-test/test3/run_0/cosmos.in' as standard
input: No such file or directory (errno 2)

 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
...

www.cs.wisc.edu/Condor

Still not running?
Exercise a little patience

› On a busy pool, it can take a while
to match and start your jobs

› Wait at least a negotiation cycle
or two (typically a few minutes)

www.cs.wisc.edu/Condor

Let Condor help:
condor_q –analyze

[einstein@submit ~]$ condor_q -ana 29
The Requirements expression for your job is:

((target.Memory > 8192)) && (target.Arch == "INTEL") &&
(target.OpSys == "LINUX") && (target.Disk >= DiskUsage) &&
(TARGET.FileSystemDomain == MY.FileSystemDomain)
Condition Machines Matched Suggestion
--------- ----------- -------- -----------
1 ((target.Memory > 8192)) 0 MODIFY TO 4000
2 (TARGET.FileSystemDomain == "cs.wisc.edu")584
3 (target.Arch == "INTEL") 1078
4 (target.OpSys == "LINUX") 1100
5 (target.Disk >= 13) 1243

www.cs.wisc.edu/Condor

Learn about available
resources:

[einstein@submit ~]$ condor_status –const 'Memory > 8192'
(no output means no matches)
[einstein@submit ~]$ condor_status -const 'Memory > 4096'
Name OpSys Arch State Activ LoadAv Mem ActvtyTime
vm1@s0-03.cs. LINUX X86_64 Unclaimed Idle 0.000 5980 1+05:35:05
vm2@s0-03.cs. LINUX X86_64 Unclaimed Idle 0.000 5980 13+05:37:03
vm1@s0-04.cs. LINUX X86_64 Unclaimed Idle 0.000 7988 1+06:00:05
vm2@s0-04.cs. LINUX X86_64 Unclaimed Idle 0.000 7988 13+06:03:47

 Total Owner Claimed Unclaimed Matched Preempting
 X86_64/LINUX 4 0 0 4 0 0
 Total 4 0 0 4 0 0

www.cs.wisc.edu/Condor

It’s Still not Working

›  Verify that the submitted job runs
stand alone
h We’ve had many cases in which users

blame Condor, but haven’t tried running
it outside of Condor

www.cs.wisc.edu/Condor

Interact With Your Job

› Why is my job still running?
Is it stuck accessing a file?
Is it in an infinite loop?

›  Try this: $ condor_ssh_to_job
h Interactive debugging in UNIX
h Use ps, top, gdb, strace, lsof, …
h Forward ports, X, transfer files, etc.

www.cs.wisc.edu/Condor

Interactive Debug Example

einstein@phy:~$ condor_q

-- Submitter: cosmos.phy.wisc.edu : <128.105.165.34:1027> :
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 1.0 einstein 4/15 06:52 1+12:10:05 R 0 10.0 cosmos

1 jobs; 0 idle, 1 running, 0 held

[einstein@submit ~]$ condor_ssh_to_job 1.0

Welcome to slot4@c025.chtc.wisc.edu!
Your condor job is running with pid(s) 15603.

$ gdb –p 15603
 …

www.cs.wisc.edu/Condor

My new jobs can run for
20 days…

•  What happens when a job
is forced off it’s CPU?
–  Preempted by higher

priority user or job
– Vacated because of user

activity
•  How can I add fault

tolerance to my jobs?

www.cs.wisc.edu/Condor

Condor’s Standard Universe
to the rescue!

› Support for transparent process
checkpoint and restart

› Remote system calls (remote I/O)
h Your job can read / write files

as if they were local

www.cs.wisc.edu/Condor

Remote System Calls in
the Standard Universe

›  I/O system calls are trapped and sent back
to the submit machine
Examples: open a file, write to a file

›  No source code changes typically required
›  Programming language independent

www.cs.wisc.edu/Condor

Process Checkpointing in the
Standard Universe

›  Condor’s process checkpointing provides a
mechanism to automatically save the
state of a job

›  The process can then be restarted from
right where it was checkpointed
h After preemption, crash, etc.

www.cs.wisc.edu/Condor

Checkpointing:
Process Starts

checkpoint: the entire state of a program,
saved in a file
  CPU registers, memory image, I/O

time

www.cs.wisc.edu/Condor

Checkpointing:
Process Checkpointed

time

1 2 3

www.cs.wisc.edu/Condor

Checkpointing:
Process Killed

time

3

3

Killed!

www.cs.wisc.edu/Condor

Checkpointing:
Process Resumed

time

3

3

goodput badput goodput

www.cs.wisc.edu/Condor

When will Condor
checkpoint your job?

›  Periodically, if desired
h For fault tolerance

›  When your job is preempted by a higher
priority job

›  When your job is vacated because the
execution machine becomes busy

›  When you explicitly run condor_checkpoint,
condor_vacate, condor_off or
condor_restart command

www.cs.wisc.edu/Condor

Making the Standard
Universe Work

›  The job must be relinked with Condor’s
standard universe support library

›  To relink, place condor_compile in front of
the command used to link the job:
% condor_compile gcc -o myjob myjob.c

- OR -
% condor_compile f77 -o myjob filea.f fileb.f

- OR -
% condor_compile make –f MyMakefile

www.cs.wisc.edu/Condor

Limitations of the
Standard Universe

›  Condor’s checkpointing is not at the kernel
level.
h Standard Universe the job may not:

•  Fork()
•  Use kernel threads
•  Use some forms of IPC, such as pipes and shared

memory
›  Must have access to source code to relink
›  Many typical scientific jobs are OK
›  Only available on Linux platforms

www.cs.wisc.edu/Condor

Death of the
Standard Universe

www.cs.wisc.edu/Condor

DMTCP & Parrot
›  DMTCP (Checkpointing)

h “Distributed MultiThreaded Checkpointing”
h Developed at Northeastern University
h http://dmtcp.sourceforge.net/
h See Gene Cooperman's (Northeastern University) talk

tomorrow @ 2:20
›  Parrot (Remote I/O)

h “Parrot is a tool for attaching existing programs to remote
I/O system”

h Developed by Doug Thain (now at Notre Dame)
h http://www.cse.nd.edu/~ccl/software/parrot/
h dthain@nd.edu

www.cs.wisc.edu/Condor

VM Universe

›  Runs a virtual machine instance as a
job

›  VM Universe:
h Job sandboxing
h Checkpoint and migration
h Safe elevation of privileges
h Cross-platform

www.cs.wisc.edu/Condor

More on VM Universe

›  Supports VMware, Xen, KVM
›  Input files can be imported as CD-

ROM image
› When VM shuts down, modified disk

image is returned as job output

www.cs.wisc.edu/Condor

Example VMware Job
›  This example uses the vmware_dir command to

identify the location of the disk image to be
executed as a Condor job.

›  The contents of this directory are transferred to
the machine assigned to execute the Condor job.

›  See Jaime’s talk at 4:30 today for lots more!

universe = vm
executable = vmware_sample_job
log = simple.vm.log.txt
vm_type = vmware
vm_memory = 64
vmware_dir = C:\condor-test
vmware_should_transfer_files = True
queue

www.cs.wisc.edu/Condor

Albert meets The Grid
›  Albert also has access to grid resources he

wants to use
h He has certificates and access to Globus or

other resources at remote institutions
›  But Albert wants Condor’s queue

management features for his jobs!
›  He installs Condor so he can submit “Grid

Universe” jobs to Condor

www.cs.wisc.edu/Condor

“Grid” Universe
›  All handled in your submit file
›  Supports a number of “back end” types:

h Globus: GT2, GT4
h NorduGrid
h UNICORE
h Condor
h PBS
h LSF
h EC2
h NQS

www.cs.wisc.edu/Condor

Grid Universe & Globus 2
› Used for a Globus GT2 back-end

h “Condor-G”
›  Format:
Grid_Resource = gt2 Head-Node
Globus_rsl = <RSL-String>

›  Example:
Universe = grid
Grid_Resource = gt2 beak.cs.wisc.edu/jobmanager
Globus_rsl = (queue=long)(project=atom-smasher)

www.cs.wisc.edu/Condor

Grid Universe & Globus 4
› Used for a Globus GT4 back-end
› Format:
Grid_Resource = gt4 <Head-Node> <Scheduler-Type>
Globus_XML = <XML-String>

› Example:
Universe = grid
Grid_Resource = gt4 beak.cs.wisc.edu Condor
Globus_xml = <queue>long</queue><project>atom-

smasher</project>

www.cs.wisc.edu/Condor

Grid Universe & Condor
›  Used for a Condor back-end

h “Condor-C”
›  Format:
Grid_Resource = condor <Schedd-Name> <Collector-Name>
Remote_<param> = <value>

h “Remote_” part is stripped off
›  Example:
Universe = grid
Grid_Resource = condor beak condor.cs.wisc.edu
Remote_Universe = standard

www.cs.wisc.edu/Condor

Grid Universe & NorduGrid
› Used for a NorduGrid back-end
Grid_Resource = nordugrid <Host-Name>

›  Example:
Universe = grid
Grid_Resource = nordugrid ngrid.cs.wisc.edu

www.cs.wisc.edu/Condor

Grid Universe & UNICORE
› Used for a UNICORE back-end
›  Format:
Grid_Resource = unicore <USite> <VSite>

›  Example:
Universe = grid

Grid_Resource = unicore uhost.cs.wisc.edu vhost

www.cs.wisc.edu/Condor

Grid Universe & PBS
› Used for a PBS back-end
›  Format:
Grid_Resource = pbs

›  Example:
Universe = grid
Grid_Resource = pbs

www.cs.wisc.edu/Condor

Grid Universe & LSF
› Used for a LSF back-end
›  Format:
Grid_Resource = lsf

›  Example:
Universe = grid
Grid_Resource = lsf

www.cs.wisc.edu/Condor

Credential Management
›  Condor will do The Right Thing™ with your

X509 certificate and proxy
›  Override default proxy:

h X509UserProxy = /home/einstein/other/proxy

›  Proxy may expire before jobs finish
executing
h Condor can use MyProxy to renew your proxy
h When a new proxy is available, Condor will

forward the renewed proxy to the job
h This works for non-grid jobs, too

www.cs.wisc.edu/Condor
Dan, Condor Week 2008

JobRouter
A Flexible Job Transformer

›  Acts upon jobs in queue
›  Policy controls when

•  (jobs currently routed to site X) < max
•  (idle jobs routed to site X) < max
•  (rate of recent failure at site X) < max

›  And how
•  change attribute values (e.g. Universe)
•  insert new attributes (e.g. GridResource)
•  other arbitrary actions in hooks

www.cs.wisc.edu/Condor
Dan, Condor Week 2008

Example: sending excess
vanilla jobs to a grid site

Universe = “vanilla”
Executable = “sim”
Arguments = “seed=345”
Output = “stdout.345”
Error = “stderr.345”
ShouldTransferFiles = True
WhenToTransferOutput = “ON_EXIT”

Universe = “grid”
GridType = “gt2”
GridResource = \
 “cmsgrid01.hep.wisc.edu/jobmanager-condor”
Executable = “sim”
Arguments = “seed=345”
Output = “stdout”
Error = “stderr”
ShouldTransferFiles = True
WhenToTransferOutput = “ON_EXIT”

JobRouter
Routing Table:
 Site 1
 …
 Site 2
 …

final status

routed (grid) job original (vanilla) job

www.cs.wisc.edu/Condor
Dan, Condor Week 2008

JobRouter vs. Glidein
›  Glidein - Condor overlays the grid

h Job never waits in remote queue
h Full job management (e.g. condor_ssh_to_job)
h Private networks doable, but add to complexity
h Need something to submit glideins on demand

›  JobRouter
h Some jobs wait in remote queue (MaxIdleJobs)
h Job must be compatible with target grid

semantics
h Job managed by remote batch system
h Simple to set up, fully automatic to run

www.cs.wisc.edu/Condor

Condor Universes:
Scheduler and Local

› Scheduler Universe
h Plug in a meta-scheduler
h Similar to Globus’s fork job manager
h Developed for DAGMan (next slides)

›  Local
h Very similar to vanilla, but jobs run on

the local host
h Has more control over jobs than

scheduler universe

www.cs.wisc.edu/Condor

My jobs have have
dependencies…

Can Condor help solve my
dependency problems?

www.cs.wisc.edu/Condor

Workflows – Launch and
Forget

›  A single workflow can take days, weeks or even
months

›  Automates tasks user could perform manually…
h But WMS takes care of automatically

›  Includes features such as retries in the case of
failures – avoids the need for user intervention

›  The workflow itself can include error checking
›  The result: one user action can utilize many

resources while maintaining complex job inter-
dependencies and data flows

›  Maximizes compute resources / human time

www.cs.wisc.edu/Condor

Pegasus WMS

Pegasus
Workflow
Mapper

Condor
DAGMan

TeraGrid
Open Science
Grid Campus
resources
Local machine

Transformation
Catalog

Site Catalog

Workflow Description in XML

Condor
Schedd

Submit Host

Replica Catalog

Pegasus WMS restructures and optimizes the workflow,
provides reliability

Properties

www.cs.wisc.edu/Condor

DAGMan Configuration
›  Condor configuration files
›  Environment variables:

h _CONDOR_<macroname>
› DAGMan configuration file
› condor_submit_dag command line

www.cs.wisc.edu/Condor

Submit the DAG

›  Run:
h condor_submit_dag <file>

›  Creates a Condor submit file for DAGMan
›  Also submits it to Condor

h Unless –no_submit option is given
›  -f option forces overwriting of existing

files

www.cs.wisc.edu/Condor

Condor Monitoring
  Monitoring your DAG

  condor_q [–dag] [name]
  dagman.out file

[einstein@submit ~]$ condor_q –dag train15

-- Submitter: einstein@cosmos.phys.wisc.edu : <128.9.72.178:43684>
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
1860.0 train15 5/31 10:59 0+00:00:26 R 0 9.8 condor_dagman -f -
1861.0 |-Setup 5/31 10:59 0+00:00:12 R 0 9.8 nodejob Setup node

2 jobs; 0 idle, 2 running, 0 held

www.cs.wisc.edu/Condor

Exercise 2.6 - A simple
DAG

Generate

Findrange Findrange

Analyze

www.cs.wisc.edu/Condor

DAG file
›  Defines the DAG shown previously
› Node names are case-sensitive
›  Keywords are not case-sensitive
Simple DAG file.

JOB Generate generate.submit
JOB Findrange1 findrange1.submit
JOB Findrange2 findrange2.submit
JOB Analyze analyze.submit
PARENT Generate CHILD Findrange1 Findrange2
PARENT Findrange1 Findrange2 CHILD Analyze

www.cs.wisc.edu/Condor

DAG node

›  Treated as a unit
›  Job or POST script determines node success

or failure

PRE script

Condor or
Stork job

POST script

Node

www.cs.wisc.edu/Condor

PRE/POST in DAGMan
scripts

› SCRIPT PRE|POST node script
[arguments]

›  All scripts run on submit machine
›  If PRE script fails, node fails w/o running job or
POST script (for now…)

›  If job succeeds or fails, POST script is run
›  If POST script fails, node fails
›  Special macros:

h $JOB
h $RETRY
h $JOBID (POST only)
h $RETURN (POST only)

www.cs.wisc.edu/Condor

Nested DAGs

www.cs.wisc.edu/Condor

VARS (per-node variables)
› VARS JobName
macroname="string" [macroname="st
ring"...]

›  Macroname can only contain alphanumeric
characters and underscore

›  Value can’t contain single quotes; double
quotes must be escaped

›  Macronames cannot begin with “queue”
›  Macronames are not case-sensitive

www.cs.wisc.edu/Condor

Exercise 3.4 – VARS and
CONFIG

Setup

Proc1 Proc10

Cleanup

Proc n … …

www.cs.wisc.edu/Condor

Exercise 3.4, continued
[einstein@submit ~]$ cat dagman/vars/vars.dag
DAG to illustrate VARS and CONFIG.

CONFIG vars.config

JOB Setup setup.submit
SCRIPT PRE Setup setup.pre

JOB Proc1 pijob.submit
VARS Proc1 ARGS = "-sleep 60 -trials 10000 -seed 1234567"
PARENT Setup CHILD Proc1

JOB Proc2 pijob.submit
VARS Proc2 ARGS = "-sleep 80 -trials 20000 -seed 7654321"
PARENT Setup CHILD Proc2

JOB Proc3 pijob.submit
PARENT Setup CHILD Proc3
VARS Proc3 ARGS = "YOUR ARGS HERE"
[....]

www.cs.wisc.edu/Condor

Exercise 3.4, continued
[einstein@submit ~]$ cat dagman/vars/vars.config
DAGMan configuration file for vars.dag.

DAGMAN_MAX_JOBS_SUBMITTED = 3
DAGMAN_STARTUP_CYCLE_DETECT = true
DAGMAN_SUBMIT_DEPTH_FIRST = true

[einstein@submit ~]$ cat dagman/vars/pijob.submit
Simple Condor submit file.

Executable = ../pi/pi
Universe = scheduler
#Error = pi.err.$(cluster)
Output = output/pi.out.$(cluster)
Getenv = true
Log = pi.log

Arguments = $(ARGS)
Notification = never
Queue

www.cs.wisc.edu/Condor

Throttling in DAGMan
› Maxjobs (limits jobs in queue/running)
› Maxidle (limits idle jobs)
› Maxpre (limits PRE scripts)
› Maxpost (limits POST scripts)
›  All limits are per DAGMan, not global for

the pool
›  Limits can be specified as arguments to
condor_submit_dag or in configuration

www.cs.wisc.edu/Condor

Throttling by category
› CATEGORY JobName CategoryName
› MAXJOBS CategoryName MaxJobsValue
›  Applies the maxjobs setting to only jobs

assigned to the given category
›  Global throttles still apply
›  Useful with different types of jobs that

cause different loads

www.cs.wisc.edu/Condor

Node categories
Setup

Cleanup

Big job

Small job Small job Small job

Big job

Small job Small job Small job

Big job

Small job Small job Small job

www.cs.wisc.edu/Condor

Node retries
› RETRY JobName NumberOfRetries
[UNLESS-EXIT value]

›  Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value

– node fails

One node failure
– retry

www.cs.wisc.edu/Condor

Node Categories and
Retries

[einstein@submit ~]$ more montage.dag
DAG to illustrate node categories/category throttles.

MAXJOBS projection 2

CATEGORY mProjectPP_ID000002 projection
JOB mProjectPP_ID000002 mProjectPP_ID000002.sub
SCRIPT POST mProjectPP_ID000002 /nfs/software/pegasus/

default/bin/exitpost …..
RETRY mProjectPP_ID000002 2
...

www.cs.wisc.edu/Condor

Rescue DAG

›  Generated when a node fails or
DAGMan is condor_rm’ed

›  Saves state of DAG
›  Run the rescue DAG to restart from

where you left off

www.cs.wisc.edu/Condor

Recovery/bootstrap mode

› Most commonly, after condor_hold/
condor_release of DAGMan

›  Also after DAGMan crash/restart
›  Restores DAG state by reading node

job logs

www.cs.wisc.edu/Condor

Depth-first DAG traversal
›  Get results more quickly
›  Possibly clean up intermediate files more quickly
›  DAGMAN_SUBMIT_DEPTH_FIRST=True

www.cs.wisc.edu/Condor

DAG node priorities
› PRIORITY JobName PriorityValue
›  Determines order of submission of ready

nodes
›  Does not violate/change DAG semantics
›  Mostly useful when DAG is throttled
›  Higher Numerical value equals higher

priority

www.cs.wisc.edu/Condor

VisTrails

›  An open-source scientific workflow
and provenance management system
developed at the University of Utah

› We are working with the VisTrails
group to add DAGMan support to
VisTrails

›  See www.vistrails.org

www.cs.wisc.edu/Condor

VisTrails, continued

www.cs.wisc.edu/Condor

Relevant Links

› DAGMan:
www.cs.wisc.edu/condor/dagman

›  For more questions:
condor_admin@cs.wisc.edu

www.cs.wisc.edu/Condor

SOAR
›  What is SOAR?

h A System Of Automatic Runs
h A framework for collecting N jobs into a DAG,

 submitting them to Condor and tracking the run
h A tool that lets one make these jobs complex

workflows
h An environment to control production of large sets

of data
h A simple web interface for tracking runs and

downloading results.

www.cs.wisc.edu/Condor

How does SOAR work?

›  SOAR:
h Sweeps drop box for new job data
h Creates the run
h Periodically creates plot and reports

showing progress of run
h After the DAG completes, SOAR makes

your results available through the web
interface

www.cs.wisc.edu/Condor

View SOAR Job Progress

www.cs.wisc.edu/Condor

SOAR

› When is it best used?
h When a production environment is

desired.
h When a researcher is Linux challenged
h When each job is a complex DAG in

itself.
›  Web peak: www.submit.chtc.wisc.edu/SOAR/
›  Info: Bill Taylor bt@cs.wisc.edu CHTC Staff

www.cs.wisc.edu/Condor

General User Commands
›  condor_status View Pool Status
›  condor_q View Job Queue
›  condor_submit Submit new Jobs
›  condor_rm Remove Jobs
›  condor_prio Intra-User Prios
›  condor_history Completed Job Info
›  condor_submit_dag Submit new DAG
›  condor_checkpoint Force a checkpoint
›  condor_compile Link Condor library

www.cs.wisc.edu/Condor

Condor Job Universes
•  Vanilla Universe
•  Standard Universe
•  Grid Universe
•  Scheduler Universe
•  Local Universe
•  Virtual Machine

Universe
•  Java Universe

•  Parallel Universe
•  MPICH-1
•  MPICH-2
•  LAM
•  …

www.cs.wisc.edu/Condor

Why have a special
Universe for Java jobs?

›  Java Universe provides more than just
inserting “java” at the start of the execute
line of a vanilla job:
h Knows which machines have a JVM installed
h Knows the location, version, and performance of

JVM on each machine
h Knows about jar files, etc.
h Provides more information about Java job

completion than just JVM exit code
•  Program runs in a Java wrapper, allowing Condor to

report Java exceptions, etc.

www.cs.wisc.edu/Condor

Universe Java Job
Example Java Universe Submit file
Universe = java
Executable = Main.class
jar_files = MyLibrary.jar
Input = infile
Output = outfile
Arguments = Main 1 2 3
Queue

www.cs.wisc.edu/Condor

Java support, cont.
bash-2.05a$ condor_status –java
 Name JavaVendor Ver State Actv LoadAv Mem
abulafia.cs Sun Microsy 1.5.0_ Claimed Busy 0.180 503
acme.cs.wis Sun Microsy 1.5.0_ Unclaimed Idle 0.000 503
adelie01.cs Sun Microsy 1.5.0_ Claimed Busy 0.000 1002
adelie02.cs Sun Microsy 1.5.0_ Claimed Busy 0.000 1002
…
 Total Owner Claimed Unclaimed Matched Preempting
 INTEL/LINUX 965 179 516 250 20 0
 INTEL/WINNT50 102 6 65 31 0 0
SUN4u/SOLARIS28 1 0 0 1 0 0
 X86_64/LINUX 128 2 106 20 0 0

 Total 1196 187 687 302 20 0

www.cs.wisc.edu/Condor

Albert wants Condor features
on remote resources

› He wants to run standard universe
jobs on Grid-managed resources
h For matchmaking and dynamic scheduling

of jobs
h For job checkpointing and migration
h For remote system calls

www.cs.wisc.edu/Condor

Condor GlideIn
›  Albert can use the Grid Universe to run

Condor daemons on Grid resources
›  When the resources run these GlideIn

jobs, they will temporarily join his Condor
Pool

›  He can then submit Standard, Vanilla, PVM,
or MPI Universe jobs and they will be
matched and run on the remote resources

›  Currently only supports Globus GT2
h We hope to fix this limitation

www.cs.wisc.edu/Condor

your
workstation

Friendly Condor Pool

personal
Condor

600 Condor
jobs

Globus Grid

PBS LSF

Condor

Condor Pool

 glide-in jobs

www.cs.wisc.edu/Condor

How It Works
Manager

LSF

User Job

Startd

Personal Condor Remote Resource

Condor jobs

GlideIn
jobs

Starter

Schedd Collector &
Negotiator

Grid
Manager

Shadow

Master

www.cs.wisc.edu/Condor

GlideIn Concerns
›  What if the remote resource kills my

GlideIn job?
h That resource will disappear from your pool and

your jobs will be rescheduled on other machines
h Standard universe jobs will resume from their

last checkpoint like usual
›  What if all my jobs are completed before a

GlideIn job runs?
h If a GlideIn Condor daemon is not matched with

a job in 10 minutes, it terminates, freeing the
resource

www.cs.wisc.edu/Condor

In Review
With Condor’s help, Albert can:

h Manage his compute job workload
h Access local machines
h Access remote Condor Pools via flocking
h Access remote compute resources on

the Grid via “Grid Universe” jobs
h Carve out his own personal Condor Pool

from the Grid with GlideIn technology

www.cs.wisc.edu/Condor

Administrator Commands
›  condor_vacate Leave a machine now
›  condor_on Start Condor
›  condor_off Stop Condor
›  condor_reconfig Reconfig on-the-fly
›  condor_config_val View/set config
›  condor_userprio User Priorities
›  condor_stats View detailed usage

 accounting stats

www.cs.wisc.edu/Condor

My boss wants to watch what
Condor is doing

www.cs.wisc.edu/Condor

Use CondorView!
›  Provides visual graphs of current and past

utilization
›  Data is derived from Condor's own accounting

statistics
›  Interactive Java applet
›  Quickly and easily view:

h How much Condor is being used
h How many cycles are being delivered
h Who is using them
h Utilization by machine platform or by user

www.cs.wisc.edu/Condor

CondorView Usage Graph

www.cs.wisc.edu/Condor

I could also talk lots about…
›  GCB: Living with firewalls & private networks
›  Federated Grids/Clusters
›  APIs and Portals
›  MW
›  Database Support (Quill)
›  High Availability Fail-over
›  Compute On-Demand (COD)
›  Dynamic Pool Creation (“Glide-in”)
›  Role-based prioritization and accounting
›  Strong security, incl privilege separation
›  Data movement scheduling in workflows
›  …

www.cs.wisc.edu/Condor

Thank you!

Check us out on the Web:
http://www.condorproject.org

Email:
condor-admin@cs.wisc.edu

www.cs.wisc.edu/Condor

