
Pegasus WMS: Leveraging
Condor for Workflow

Management

http://pegasus.isi.edu

Ewa Deelman, Gaurang Mehta, Karan Vahi,
Gideon Juve, Mats Rynge, Prasanth
Thomas, Jens Voeckler

USC Information Sciences Institute

Miron Livny, Kent Wenger, and others
University of Wisconsin Madison
Funded by the NSF OCI SDCI project

Examples of Applications
  Providing a service to a community (Montage project)

  Data and derived data products available to a broad range of users
  A limited number of small computational requests can be handled locally
  For large numbers of requests or large requests need to rely on shared

cyberinfrastructure resources
  On-the fly analysis generation, portable analysis definition

  Supporting community-based analysis (SCEC project)
  Codes are collaboratively developed
  Codes are “strung” together to model complex systems
  Ability to correctly connect components, scalability

  Processing large amounts of shared data on shared resources
(LIGO project)
  Data captured by various instruments and cataloged in community data

registries.
  Amounts of data necessitate reaching out beyond local clusters
  Automation, scalability and reliability

  Automating the work of one scientist (SIPHT Project, Broad Institute,
Epigenomic project, USC)
  Data collected in a lab needs to be analyzed in several steps
  Automation, efficiency, and flexibility (scripts age and are difficult to change)
  Need to have a record of how data was produced

Reasons to use scripts to
represent analysis

  You can script something in an afternoon
  You can submit a job directly to a pbs queue

or Condor pool
  You can look at stderr to see what went

wrong
  You can add calls to measure performance
  You don’t need to learn another language or

system

Why Scientific Workflows?
  Workflows can be portable across platforms and

scalable
  Workflows are easy to reuse
  Can be shared with others

  Gives a leg-up to new staff, GRAs, PostDocs, etc
  Workflow Management Systems (WMS) can help

recover from failures and optimize overall
application performance

  WMS can capture provenance and performance
information

  WMS can leverage debugging and monitoring
tools

Workflow Lifecycle

Creation

Planning

Scheduling/
Execution

Reuse

Distributed

Our Philosophy
  Work closely

  with users to improve software, make it relevant
  with CS colleagues to develop new capabilities, share ideas,

and develop complex systems
  Users
  Enable them to author workflows in a way comfortable for them
  Allow users to enter the system at any point
  Provide reliability, scalability, performance
  Software
  Be a “good” CI ecosystem member

  Focus on one aspect of the problem and contribute solutions
  Leverage existing solutions where possible

  Execution Environment
  Use whatever we can, support heterogeneity

Our Approach

  Representation
  Support a declarative representation for the workflow (dataflow)
  Represent the workflow structure as a Directed Acyclic Graph

(DAG)
  Use recursion to achieve scalability

  System
  Layered architecture, each layer is responsible for a particular

function
  Mask errors at different levels of the system
  Modular, composed of well-defined components, where different

components can be swapped in
  Open—provides a number of interfaces to enter the system, and

exposes interfaces to other CI entities
  Use and adapt existing graph and other relevant algorithms

Our system, Pegasus WMS

Pegasus WMS, layering functionality
  Condor Schedd

  A robust task management and execution capability
  DAGMan

  A workflow executor
  Scalable and reliable execution of an executable

workflow, adaptivity
  Pegasus Mapper

  a workflow “compiler”
  target language - DAGMan’s DAG and Condor submit

files
  Generated an executable workflow

  transforms the workflow for performance and reliability
  Abstract Workflows

  identifies only the computations that a user wants to do
  devoid of resource descriptions
  devoid of data locations

Condor Schedd

DAGMan

Pegasus mapper

Abstract
Workflow

Executable
tasks

Ewa Deelman, deelman@isi.edu
 www.isi.edu/~deelman

 http://pegasus.isi.edu

Submit host

Executable Workflow
Generated by Pegasus

Pegasus:
Selects an execution site
Selects a data archive
Creates a workflow that
• Creates a “sandbox” on the execution site
• Stages data
• Invokes the computation
• Stages out data
• Registers data and Cleans up execution site
• Captures provenance information

Performs other optimizations

Transformation Catalog

Site Catalog

Pegasus

CondorDAG / Condor Submit files

Populated by user or community Populated automatically through
pegasus-get-sites* or by the user

*OSG interface provided by Vikas Patel and Sebastian Goasguen

DAX snippet

The LIGO example, migrating up
the software stack

  LIGO has been using DAGMan for its scientific analysis
  Issue 1: LIGO users log onto to a particular cluster and launch

computations there (no load balance)
  Issue 2: Sometimes part of input data is “vetoed” and needs to be

eliminated from the analysis, so potentially large amounts of redundant
work need to be redone

  Issue 3: Some tasks are very short running and incur large overheads
  Issue 4: Want to be able to run the same workflow on other Grids (OSG),

and share analyses with EU colleagues
  Issue 5: Want to be able to keep parts of a pipeline as a DAG—for

legacy visualization pipelines
  Issue 6: For large workflows, it is difficult to analyze the DAGMan/

Condor logs to pinpoint problems

LIGO on OSG and LDG

Total 5402 jobs
~800 CPU hours cumulative

LIGO Issues
  Issue 1: LIGO users log onto to a particular cluster and launch computations there

(no load balance)

  Pegasus uses information services or user-provided information
to schedule an entire workflow onto a single cluster or across
clusters

  Pegasus brings back intermediate and final results to a user-
specified location

  Issue 2: Sometimes part of input data is “vetoed” and needs to be eliminated from
analysis, so potentially large amounts of redundant work need to be redone

  Pegasus has the concept of “virtual data” where if data are
already available it will be reused

  If the same workflow is re-submitted, and some intermediate
data are already available, the executable workflow will reuse it
 efficient execution, scientists can start analysis without
waiting for final “vetoes”

  Issue 3: Some tasks are very short running and incur large overheads

  Pegasus can automatically cluster tasks together so that they
are treated as one by DAGMan, Condor, and the target
execution system

  Issue 4: Want to be able to run on other Grids, and share analyses with EU
colleagues
  Pegasus DAXes are devoid of resource information, so to run a

DAX in a new environment, only “local” info about resources and
data locations needs to be given separately, Pegasus will
generate the right DAG and Condor Submit files

  Issue 5: Want to be able to keep parts of a pipeline as a DAG—legacy
visualization pipelines
  You can embed a DAG into a DAX and this information will be

passed through to DAGMan You can use any DAGMAN
features inside a DAX

  Issue 6: Difficulty analyzing the DAGMan/Condor logs to pinpoint problems

  Developed pegasus-analyzer that can traverse
  the DAGMan.out and Condor’s *.err and *.out information

“This is so much easier!” -- Duncan Brown, LIGO

===================lalapps_tmpltbank_ID002291===========================
 last state: JOB_FAILURE
 site: local
submit file: /usr1/ilya/log/H1L1V1- s6_highmass_ihope-937800015-4197585.3CpZuA/datafind/

lalapps_tmpltbank_ID002291.sub
output file: /usr1/ilya/log/H1L1V1-s6_highmass_ihope-937800015-4197585.3CpZuA/datafind/lalapps_tmpltbank_ID002291.out
error file: /usr1/ilya/log/H1L1V1- s6_highmass_ihope-937800015-4197585.3CpZuA/datafind/lalapps_tmpltbank_ID002291.err

------------------------- lalapps_tmpltbank_ID002291.out-------------------------
 -------------------------lalapps_tmpltbank_ID002291.err-------------------------

XLAL Error - XLALFrNext: gap in frame data
XLAL Error - XLALFrNext: time 941096000.000000 is end of frame 3999 of file URL

file://localhost/frames/VSR2/HrecOnline/V1/V-HrecOnline-941/V-HrecOnline-941092000-4000.gwf
XLAL Error - XLALFrNext: time 941100000.000000 is start of frame 0 of file URL

file://localhost/frames/VSR2/HrecOnline/V1/V-HrecOnline-941/V-HrecOnline-941100000-4000.gwf
XLAL Error - XLALFrNext (FrameStream.c:608): Invalid time
Error[2] 8192: function LALFrNext, file FrameStream.c, line 1046, Id
ABORT: Gap in the data

……………………..

  Developing a browser-based visualization for
performance and failure analysis

  “When LIGO inspiral group switched the from DAGs to DAXes—
we did not notice, the results were delivered as before” --
Frederique Marion, LIGO-Virgo CBC Group

Challenges in workflow reliability
leveraging the software layers

  Resources fail
  Provide a retry mechanism

  Services fail (data movement, data
registration)
  Retry the action, choose a different service

  Computations fail within a workflow
  Checkpoint the workflow

  Storage gets filled up
  Analyze the workflow and clean up unneeded

data as the workflow execution progresses

NMI Test and Build Lab

Production releases

Nightly builds and tests
3 Pegasus packages
(Mapper, WMS, Worker)
15 platforms
.tar.gz / .deb / .rpm
•  Latest code is pulled from the
Pegasus SVN, built and tested.
•  Generated packages (~50) are
automatically pushed back to the
Pegasus website

Pinned Condor release build
used as input to the WMS
package

Future Directions
•  Debugging workflows is still difficult

•  Need to be able to interpret errors
•  Analyze what happened
• Need to be able to provide error information at
the level needed by the user

• Online monitoring is still an issue for large
workflows (teaming up with Netlogger)

•  Automatically exploiting data parallelism, how to
subdivide a data set

•  Generate computational bundles (data, codes,
configurations) – automated boinc

Want to try?
pegasus@isi.edu

  Hands-on help
http://pegasus.isi.edu

  Tutorial materials

Related Technologies: Corral-WMS Th. pm by Mats Rynge

