
DMTCP and Condor: a New Checkpointing Mechanism

Gene Cooperman (presenting)
High Performance Computing Laboratory

College of Computer and Information Science
Northeastern University, Boston

gene@ccs.neu.edu

Joint work with:

Kapil Arya, Northeastern University
Peter Keller, Condor Project, U. of Wisconsin-Madison
Artem Y. Polyakov, Siberian State U. of Telecom.

and Informatics, Russia



DMTCP Overview

DMTCP (Distributed MultiThreaded CheckPointing):

• Mature: five years in development

• Robust:current user base in hundreds and growing

• Non-invasive:no root privilege needed; no kernel modules; transparently operates on
binaries, no application source code needed

• Fast: checkpoint/restart in less than a second (dominated by disk time)

• Versatile:works on OpenMPI, MATLAB, Python, bash, gdb, X-Windows apps, etc.

• Open Source:freely available athttp://dmtcp.sourceforge.net (LGPL)

STANDALONE USAGE:
dmtcp checkpoint a.out
dmtcp command --checkpoint
dmtcp restart ckpt a.out *.dmtcp

http://dmtcp.sourceforge.net


DMTCP Downloads

DMTCP is currently averaging over 100 downloads per month.



DMTCP: How Does It Work?

Provides fast checkpoint-restart (typically less than a second)
10 MB checkpoint typical (based on footprint in RAM)
Dynamic compression of checkpoint images (enabled by default)

CKPT THREAD

USER THREAD A

USER THREAD B

CKPT THREAD

USER THREAD C

S
IG

U
S

R
2

S
IG

U
S

R
2

S
IG

U
S

R
2

COORDINATOR

DMTCP 

CKPT MSG
CKPT MSG

USER PROCESS 2USER PROCESS 1



DMTCP Features

• DistributedMultiThreadedCheckPointing

• Works with Linux kernel 2.6.9 and later

• Supports sequential and multi-threaded computations across sin-
gle/multiple hosts

• Entirely in user space (no kernel modules or root privilege)

• Transparent (no recompiling, no re-linking)

• DMTCP Team centered around Northeastern U., with collaborators from
MIT and Siberian State U. of Telecom. and Informatics

• LGPL, freely available from sourceforge

• No Remote I/O (except through certain extensions)



Some DMTCP Features Relevant to Condor

• Multiple processes allowed: fork() is supported

• Multiple threads allowed: POSIX Threads is supported

• Calls to mmap() are supported

• No need to re-link : Original binary is supported



DMTCP from the Desktop

dmtcp checkpoint a.out # starts coordinator too
dmtcp command --checkpoint # talks to coordinator
dmtcp restart ckpt a.out-*.dmtcp

• Coordinator is astatelesssynchronization server for the distributed
checkpoint algorithm

• Essentially zero run-time overhead

• Checkpoint/Restart performance depends on size of memory,disk write
speed (e.g., 100 MB/s), and network latency



DMTCP Stateless Coordinator

• The DMTCP coordinator isstateless. Its primary responsibilities are:
1. Allow DMTCP checkpoint thread of user process to register with the coordinator.

2. Relay commands (or timed checkpoints) back to user processes.

3. Provide a distributed barrier for stages of checkpoint and restart.

4. Provide a distributed nameserver to connect both ends of sockets at restart time.

What happens if one of my processes dies?
ANSWER: Tell the coordinator to kill the other processes
(e.g.,dmtcp command --kill), and then restart.

What happens if the coordinator dies?
ANSWER: Kill the rest of the process, and then restart.

My processes died. Do I need to kill the DMTCP coordinator to restart?
ANSWER: It’s optional. The dmtcprestart command will look for an existing
coordinator, and if none exists, it will start a new one.



War Stories: Interesting Interactions Between DMTCP and Condor

While simple examples of integration of DMTCP with Condor worked from
the beginning, there have been many details in getting DMTCP “ready for
prime time”.

• Blocking checkpoint — checkpoint request does not return until check-
point image has been fully written out

• Uniquely named jassert trace files — useful for diagnosis

• DMTCP TMPDIR environment variable added, since jassert files are written
to /tmp, and Condor needs more flexibility.

• Environment variableDMTCP RESTART DIR added

• When a process checkpoints and exist (for example, for process
migration), what should be the success return value passed back to
Condor? (When DMTCP was running standalone, this didn’t matter.)

• Removed a-Wl,-export-dynamic in build of DMTCP library, mtcp.so
(danger of generating name conflict with application code)



War Stories: Interesting Interactions (cont.)

• -fno-stack-protector used in DMTCP build for one DMTCP file —
Condor turns on-fstack-protector by default, but can coexist with it
turned off for this DMTCP file.

• Condor uses-Wl,--hash-style=both because ELF format changed at
one point; DMTCP needs to be aware of the same issue for migration
between nodes that use different ELF formats.

• DMTCP needed to work alongside other applications that also use
LD PRELOAD



DMTCP Internals: Startup

• dmtcpcheckpoint sets Linux LDPRELOAD environment variable to
load dmtcphijack.so into all newly created process

• dmtcphijack.so creates an additional thread, DMTCP checkpoint thread,
for each process

• DMTCP checkpoint thread connects to DMTCP coordinator, and then
waits for further instructions from coordinator

• dmtcphijack.so also creates a wrapper around certain Linux system calls;
e.g., clone() (pthreadcreate), fork(), exec(), open(), bind(), connect(),
listen(), gettid(), getpid(), getppdi(), getsid(), and others

• POLICY (zero run-time overhead): dmtcphijack.so never creates a
wrapper around read(), write(), or other frequently used system calls

• Remote processes supported: Wrapper for exec
rewrites calls toexec("ssh HOST ...")
as:exec("ssh HOST dmtcp checkpoint ...")



More War Stories: the Fifteen Bugs from the Condor Test Suite

The following stories are related to DMTCP internals.

• Uncleanly exiting due to race condition: The main user thread was forced
by LD PRELOAD to execute a DMTCP C++ constructor. If the main user
thread exits before the DMTCP checkpoint thread, then the destructor is
called on the DMTCP object. Checkpoint thread is deep in a select() call
listening to the coordinator and is unresponsive. The DMTCP checkpoint
thread wakes up on process exit, but it may refers to the DMTCP object
after the user thread destroyed it. (Solution: Upon exiting, the main user
thread sets a global variable, and then sends a signal to the checkpoint
thread. The checkpoint thread sees the global variable inside the signal
handler, and exits appropriately. Solves four of the 15 bugs.)

• Shared file descriptors were no longer shared on restart in certain cases.
(Now more careful about preserving shared file descriptors)

• One of the DMTCP internal environment variables becomes visible to
user program upon restart (Solution: DMTCP now cleans up better)



More War Stories: the Fifteen Bugs (cont.)

• dmtcpaware bug — during very frequent checkpoints, dmtcpaware would
get confused about whether it had finished an operation upon restart.

• If checkpointing too soon, application can die. (Bug in DMTCP
coordinator logic — fixed)

• Address space randomization (Linux security measure) causes the kernel
to change where it believes the stack to be upon restart. DMTCPtakes
special measures to grow the kernel stack on restart to include the old
stack. A one megabyte stack in main() caused the stack to sometimes
grow beyond what DMTCP was expecting. Currently, DMTCP increased
its safety zone to always accomodate one megabyte stacks. Additional
measures are planned for the long term.



More War Stories: the Fifteen Bugs (cont. again)

• Bug in wrapper around signals was exposed exposed potentialrace
conditions. Signal wrapper code re-written more carefully.

• Additional race condition: User thread asks for checkpointbefore
checkpoint thread acknowledges to coordinator that it is now running.
(Currently added timeout if coordinator doesn’t reply soonenough —
longer term measures being considered)



DMTCP Internals: Process Virtualization

• Process Virtualization:Persistent operating system constructs, such as
process id (pid), must be maintained between checkpoint andrestart.
DMTCP translation tables between the virtual and real id are used.

I called getpid() before checkpoint, and my process id was 3603. If I
stored it in a program variable, will my process id still be 3603 when I use
the program variable after restart?
ANSWER: Yes.

My thread was waiting on a mutex lock before checkpoint. Willit still
be waiting on the mutex lock after restart? Willpthread mutex unlock()
still unlock it using the original pointer to the lock?
ANSWER: Yes and Yes.



DMTCP Internals: Process Virtualization (cont.)

• Among the Linux constructs supported by DMTCP are:fork, exec, ssh,

mutexes/semaphores, TCP/IP sockets, UNIX domain sockets, pipes, ptys (pseudo-

terminals), fifos (named pipes), terminal modes, ownership of controlling terminals,

signal handlers, open file descriptors, shared open file descriptors, I/O (including the

readline library), shared memory (via mmap), parent-child process relationships, pid

and thread id virtualization

• Persistent Linux identifiers supported include:process ids (pids), thread ids

(tids), process group ids (pgids), session ids (sids), parent process id (ppid, parent-

child relationship), pseudo terminals (ptys, such as /dev/ptmx, /dev/pts/1, etc.; or

the older BSD-style ptys), named pipes (fifos), listener ports of servers, the socket

address of a peer on the network, shared memory buffer pools (mpool,non-POSIX, but

present in Linux and BSD), System V IPC objects (shared memory, message queues,

and semaphores), POSIX shared memory (shm), and mmap (mapping between virtual

memory and physical backing file at a well-known address).



DMTCP Odds and Ends

• At checkpoint time, a checkpoint image, ckpt〈filename〉 〈global id〉.dmtcp,
for each process is created in the current working directoryon the host
of the process: e.g.,ckpt a.out 5f2439cb-11756-4bc1ce3e.dmtcp

• global id is globally unique to support process migration.

• The coordinator generatesdmtcp restart script.sh as a convenient
way of restarting all checkpoint images on all hosts. It is easily modified
to restart on different hoss, etc.

• Checkpointing under program control is supported: dmtcpaware interface

• Currently, only supports dynamic linking to libc.so. Support for static
libc.a is feasible, but not implemented.

• Runtime libraries (including libc.so) are saved as part of the checkpoint
image.

• Restarting on different Linux distributions and differentLinux kernels
usually works, but further work is needed to support robust heterogeneity
among Linux distributions.



Condor/DMTCP Integration

• Undergoing validation with Condor checkpointing test suite. Passes most
tests now; anticipated to pass all tests soon (within a month??).

• DMTCP is completely outside of Condor source code.

– A vanilla job called “shimdmtcp” that wraps the use’s job and stdfiles
with DMTCP.

– A submit description file which transfers needed dmtcp files over to
the remote side and saves intermediate checkpoints.

– No remote I/O!

• condor starter calls shim dmtcp which then starts the
dmtcp coordinator and user job under control of DMTCP. Additional
processes and threads created by the user remain under DMTCP
checkpoint control.



Submit File Example

universe = vanilla
executable = shim dmtcp
arguments = logfile stdinf stdoutf stderrf a.out arg0 . . .

should transfer files = YES
when to transfer output = ON EVICT OR EXIT
transfer input files = <dmtcp libraries and programs>,\

a.out, stdinf, stdoutf, stderrf

environment = DMTCP TMPDIR=./;JALIB STDERR PATH=/dev/null
kill sig = 2
output = shim.(Cluster).(Process).out
error = shim.(Cluster).(Process).err
log = shim.log
queue



Future Condor Integration

• Add WantCheckpoint = True andCheckpointMethod = DMTCP for a
vanilla universe job.

• Condor takes care of the wrapping of the job with DMTCP and transfer
of needed DMTCP files — no shim script voodoo.

• Condor should honorCheckpointPlatform for Vanilla universe jobs in
case of pool segmentation.

• Parallel universe support with single coordinator.

• Doug Thain’s Parrot for remote I/O.



Plans for Testing of DMTCP

Because DMTCP began life checkpointing on the desktop with a simple plan:
Usemake check to catch simple bugs, and rely on a growing user base to
help find further bugs.
Good News:The process virtualization approach provides flexibility.
Bad News:Process virtualization means that bugs can come from anywhere
(interaction with kernel, compiler, linker, libc, etc.) It’s similar to the issue
of test suite for a compiler, an operating system kernel, or avirtual machine.

• Use NMI build and test lab for testing on many Linux distributions.

• Add “real-world” programs for standard testing. (Contributions, any-
one?)

• Continue using user base:Please keep those bug reports coming.(see
next slide)

• Wiki of Known Problems and Solutions (to replace the overgrown
DMTCP QUICK-START file)



The DMTCP User Base: the Ultimate Test Lab

Please keep those bug reports coming. A warm and friendly welcome is
promised.Places to report bugs:

• dmtcp-forum@lists.sourceforge.net

• IRC channel:dmtcp

• e-mail directly to developers at dmtcp.sourceforge.net (current team of six active
developers, each with his or her own specialty)

Many methodologies used for handling bugs (according to userpreference):

1. Can you generate DMTCP jassert logs, and send us the logs?

2. Can we test your code on our machines? (First, we try to diagnose bug with binary; if
no success then with source.)

3. Can we talk on the IRC channel?

4. Can we talk on the phone while watching you demonstrate the bug using VNC (virtual
network client) in read-only mode?



The DMTCP User Base: Do It Yourself Debugging

If you prefer to take a quick look for the bug by yourself before calling us in
on it, some strategies are:

1. In DMTCP:./configure --enable-debug ; make clean ; make
Re-execute your code, and look for the/tmp/jassert.log.XXXX files. There will be
one file for each process.

2. In DMTCP:./configure --disable-pid-virtualization; make clean; make
Re-execute your code. If you code does not depend on remembering the process id
(pid), thread id (tid), etc., then you don’t need the DMTCP pid virtualization. See if this
module is the cause of your bug.

3. In DMTCP:./configure --enable-allocator; make clean; make
Use a simple (inefficient) DMTCP allocator which is guaranteednot to call mmap(),
malloc(), and free(), to see if it is a memory allocation issue.

4. For the adventurous: examine/proc/〈PID〉/maps for your process id (PID) and see if
the same memory segments appear on restart as had existed originally.

5. Try: .../dmtcp/mtcp/readmtcp YOUR CKPT IMAGE
to see if the memory segments in the checkpoint image agree with/proc/〈PID〉/maps



Further Reading

• “DMTCP: Transparent Checkpointing for Cluster Computationand the
Desktop”, Jason Ansel, Kapil Arya, and Gene Cooperman

– 23rd IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS’09), 2009

– Technical Report:http://arxiv.org/abs/cs/0701037

• Source code and further information:

– http://dmtcp.sourceforge.net

http://arxiv.org/abs/cs/0701037
http://dmtcp.sourceforge.net


Questions

• DMTCP

– http://dmtcp.sourceforge.net :
dmtcp-forum@lists.sourceforge.net

– Gene Cooperman :gene@ccs.neu.edu

• Condor/DMTCP Integration

– Pete Keller:psilord@cs.wisc.edu

– Ask me if you want to try the Alpha Version out!

http://dmtcp.sourceforge.net

