

Corral: A Glide-in Based Service for Resource Provisioning

Gideon Juve

USC Information Sciences Institute

juve@usc.edu

Outline

- Throughput Applications
- Grid Computing
- Multi-level scheduling and Glideins
- Corral
- Example: SCEC CyberShake
- Future Work

Throughput Applications

- Characterized by
 - Many tasks: Thousands to millions
 - Short task runtimes: May be less than 60s
 - Tasks are commonly serial
- Key performance metric: **time-to-solution**
- Examples:
 - scientific workflows
 - parameter sweep
 - master-worker
 - "pleasantly parallel"

Grid Computing

- Grids
 - Benefit: Provide plenty of computing resources
 - Challenge: Using those resources effectively
- Grid Overheads
 - Queuing Delays
 - Software Overheads
 - Scheduling Delays
 - Scheduling Policies
 - => Bad performance for throughput applications!
- Some solutions
 - Task clustering (workflows)
 - Advance reservations

Multi-level Scheduling

- Way for an application to use grid without the overheads
- Overlay a **personal cluster** on top of grid resources
- Pilot jobs install and run a user-level resource manager, which contacts an application-specific scheduler to be matched with application jobs
- Glidein: How to do MLS using Condor

Benefits of MLS and Glideins

- Running short jobs on the grid
 - Condor dispatches jobs faster than, e.g. Globus
- Bypass site scheduling policies
 - Use application-specific policies
 - e.g. prioritize jobs based on application needs
- Avoid competition for resources
 - Glideins reserve resources for multiple jobs
 - Minimizes queuing delays
- Better application scalability
 - Compared to GT2 GRAM, for example
 - Fewer jobmanagers => reduced load on gateway

Corral

- Resource provisioning system
 - Uses multi-level scheduling model
 - Allocate resources explicitly rather than implicitly
 - Pay to allocate resources once and reuse them
 - Effectively minimizes grid overheads
 - Requires resource specification
- Corral web service
 - Automates the installation and configuration of Condor on grid sites
 - Submits glideins to provision resources

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

LOCAL SITE

Corral Features

- Auto-configuration
 - Detect architecture, OS, glibc => Condor package
 - Determine public IP (if any)
 - Generates Condor configuration file
- Large requests
 - 1 glidein job = N slots
- Multiple interfaces
 - Command-line, SOAP, Java API
- Automatic resubmission
 - Indefinitely, N times, until date/time
- Notifications
 - Asynchronous API for integration with other tools

Networking Challenges

- Firewalls / Private IPs
 - Block communication between glideins and pool
 - Use: GCB/CCB, VPN, or CM on head node
 - Glideins can't be used on some sites
- Port Usage
 - Condor requires many ports
 - Issue for LOWPORT/HIGHPORT firewall holes
 - TCP TIME_WAIT can consume ports
- WAN issues
 - Large glidein pools look like DDoS attacks
 - Traffic gets blocked sometimes

SCEC CyberShake

- Probabilistic seismic hazard analysis workflow
 - How hard will the ground shake in the future?
- Uses Pegasus and DAGMan for workflow management

Transformation		Tasks	Runtime (s)
SGT Extraction		7,000	139
Seismogram Synthesis		420,000	48
Peak Ground Motion		420,000	1
		Total Tasks:	847,000
11	Me	an Runtime:	25.45

CyberShake Progress

- Using Corral since January
 - Provisioning resources from the TeraGrid
 - Requests: 185
 - Slots: 33,137
 - CPU Hours: 240,496
- Application Progress
 - Jan 2009-Apr 2009
 - Tasks: >11.3M
 - Jobs: >352K
 - May 2009 (planned)
 - Tasks: ~168M
 - Jobs: ~5M

 With glideins a site can be completed in ~3 hours on 800 cores (down from 18+ hours)

Future Work

- Dynamic Provisioning
 - Automatically grow/shrink pool according to application needs
- Support for other features
 - GSI security
 - CCB for firewall traversal (GCB already)
 - Grid matchmaking
 - Parallel universe
- Remote Pool?
 - Deploy Collector/Negotiator/Schedd as well

Try it out

- Website:
 - http://pegasus.isi.edu/corral
- Problems:
 - juve@usc.edu

Questions?