
Pegasus WMS Tutorial

Gaurang Mehta1, Kent Wenger 2
(gmehta@isi.edu, wenger@cs.wisc.edu)

1
Center for Grid Technologies, USC Information Sciences

Institute
2 University of Wisconsin Madison, Madison, WI

 Outline of Tutorial

  Introduction to Pegasus WMS

  Composing a Simple Workflow In terms of DAX.

  Pegasus Internals

  Mapping and Running Workflows Locally

  Mapping and Running Workflows on the Grid

  Optimization techniques for mapping and executing

Large Scale workflows

Scientific Workflows

  Capture individual data transformation and analysis
steps

  Large monolithic applications broken down to
smaller jobs.
  Smaller jobs can be independent or connected by

some control flow/ data flow dependencies.
  Usually expressed as a Directed Acyclic Graph of

tasks

  Allows the scientists to modularize their application
  Scaled up execution over several computational

resources

*The full moon is 0.5 deg. sq. when viewed form Earth, Full Sky is ~ 400,000 deg. sq.

Generating mosaics of the sky (Bruce Berriman, Caltech)

Size of the
mosaic is
degrees
square*

Number of
jobs

Number of
input data
files

Number of
Intermediate
files

Total
data
footprint

Approx.
execution time
(20 procs)

1 232 53 588 1.2GB 40 mins

2 1,444 212 3,906 5.5GB 49 mins

4 4,856 747 13,061 20GB 1hr 46 mins

6 8,586 1,444 22,850 38GB 2 hrs. 14 mins

10 20,652 3,722 54,434 97GB 6 hours

LIGO Scientific Collaboration

  Continuous gravitational waves are expected to be produced by a
variety of celestial objects

  Only a small fraction of potential sources are known
  Need to perform blind searches, scanning the regions of the sky

where we have no a priori information of the presence of a source
  Wide area, wide frequency searches

  Search is performed for potential sources of continuous periodic
waves near the Galactic Center and the galactic core

  Search for binary inspirals collapsing into black holes.
  The search is very compute and data intensive

Southern California Earthquake Center (SCEC)
•  SCEC’s Cybershake is used to create Hazard

Maps that specify the maximum shaking
expected over a long period of time

CyberShake Science result: CyberShake delivers new insights into how rupture
directivity and sedimentary basin effects contribute to the shaking experienced at different
geographic locations. As a result more accurate hazard maps can be created.

Pegasus mapped SCEC
CyberShake workflows
onto the TeraGrid in Fall
2005. The workflows ran
over a period of 23 days
and processed 20TB of
data using 1.8 CPU Years.
Total tasks in all workflows:
261,823.

•  Used by civil engineers to determine building design tolerances

SCEC is led by Tom Jordan, USC

Pegasus-Workflow Management System
a layered approach

Task Execution System
Reliable, scalable execution of
independent tasks (locally, across
the network), priorities, scheduling

Workflow Execution System Reliable and scalable execution of
dependent tasks

A reliable, scalable workflow management system that
an application or workflow composition service can
depend on to get the job done

Workflow Mapping System

A decision system that develops
strategies for reliable and efficient
execution in a variety of environments

Cyberinfrastructure: Local machine, cluster, Condor pool, Grid

Pegasus Workflow Management System

Condor Schedd

DAGMan

Pegasus mapper

Reliable, scalable execution of
independent tasks (locally, across
the network), priorities, scheduling

Reliable and scalable execution of
dependent tasks

A reliable, scalable workflow management system that an
application or workflow composition service can depend on to
get the job done

A decision system that develops
strategies for reliable and efficient
execution in a variety of environments

Cyberinfrastructure: Local machine, cluster, Condor pool, OSG, TeraGrid

Abstract Workflow

Mapping Correctly

  Select where to run the computations
  Apply a scheduling algorithm

  HEFT, min-min, round-robin, random
  Schedule in a data-aware fashion (data transfers, amount of storage)
  The quality of the scheduling depends on the quality of information

  Transform task nodes into nodes with executable descriptions
  Execution location
  Environment variables initializes
  Appropriate command-line parameters set

  Select which data to access
  Add stage-in nodes to move data to computations
  Add stage-out nodes to transfer data out of remote sites to

storage
  Add data transfer nodes between computation nodes that execute

on different resources
  Add nodes to create an execution directory on a remote site

Additional Mapping Elements

  Cluster compute nodes in small granularity applications
  Add data cleanup nodes to remove data from remote sites

when no longer needed
  reduces workflow data footprint

  Add nodes that register the newly-created data products
  Provide provenance capture steps

  Information about source of data, executables invoked,
environment variables, parameters, machines used,
performance

  Scale matters--today we can handle:
  1 million tasks in the workflow instance (SCEC)
  10TB input data (LIGO)

Optimizations during Mapping

  Node clustering for fine-grained computations
  Can obtain significant performance benefits for some

applications (in Montage ~80%, SCEC ~50%)

  Data reuse in case intermediate data products are available
  Performance and reliability advantages—workflow-level

checkpointing

  Data cleanup nodes can reduce workflow data footprint
  by ~50% for Montage, applications such as LIGO need

restructuring

  Workflow partitioning to adapt to changes in the environment
  Map and execute small portions of the workflow at a time

Workflow Reduction (Data Reuse)

How to: Files need to be cataloged in replica catalog at runtime. The
registration flags for these files need to be set in the DAX

File cleanup

  Problem: Running out of space on shared scratch
  In OSG scratch space is limited to 30Gb for all users

  Why does it occur
  Workflows bring in huge amounts of data
  Data is generated during workflow execution
  Users don’t worry about cleaning up after they are done

  Solution
  Do cleanup after workflows finish

  Does not work as the scratch may get filled much before during
execution.

  Interleave cleanup automatically during workflow execution.
  Requires an analysis of the workflow to determine, when a file is

no longer required.

Storage Improvement for Montage
Workflows

Montage 1 degree workflow run with cleanup on OSG-PSU

Managing execution environment changes
through partitioning

Resulting Meta-Workflow

Workflow-level checkpointing

 Outline of Tutorial

  Introduction to Pegasus WMS

  Composing a Simple Workflow In terms of DAX.

  Pegasus Internals

  Mapping and Running Workflows Locally

  Mapping and Running Workflows on the Grid

  Optimization techniques for mapping and executing

Large Scale workflows

High-level system view

Pegasus workflow

  DAX
 What it describes
 How to read a DAX
 How to generate a DAX

 Describe the various methods
  Direct XML
  Wings
  DAX API
  Behind portals

 Migrating from a DAG to DAX

Abstract Workflow (DAX)
Exercise: 2.1

  Pegasus workflow description—DAX
 workflow “high-level language”
 devoid of resource descriptions
 devoid of data locations
  refers to codes as logical transformations
  refers to data as logical files

Understanding DAX (1)
<!-- part 1: list of all files used (may be empty) -->
 <filename file="f.input" link="input"/>
 <filename file="f.intermediate" link="input"/>
 <filename file="f.output" link=”output"/>

<!-- part 2: definition of all jobs (at least one) -->
 <job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" >
 <argument>-a top -T 6 -i <filename file=”f.input"/> -o <filename file=”f.intermediate"/>
 </argument>
 <uses file=”f.input" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file=”f.intermediate" link="output" dontRegister="true" dontTransfer="true"/>
 </job>
 <job id="ID000002" namespace=”pegasus" name=”analyze" version="1.0" >
 <argument>-a top -T 6 -i <filename file=”f.intermediate"/> -o <filename file=”f.output"/>
 </argument>
 <uses file=”f.input" link="input" dontRegister="false" dontTransfer="false"/>
 <uses file=”f.intermediate" link="output" dontRegister=”false" dontTransfer=”false"/>
 </job>

<!-- part 3: list of control-flow dependencies (empty for single jobs) -->
 <child ref="ID000002">
 <parent ref="ID000001"/>
 </child>
(excerpted for display)

Creating Workflow Template with Wings GUI

Comparison of abstract and executable
workflows

 Abstract Workflow Executable Workflow
Describes your workflow at a
logical level

Describes your workflow in
terms of physical files and
paths

Site Independent Site Specific

Captures just the
computation that the user
(you) want to do

Has additional jobs for data
movement etc.

 Outline of Tutorial

  Introduction to Pegasus WMS

  Composing a Simple Workflow In terms of DAX.

  Pegasus Internals

  Mapping and Running Workflows Locally

  Mapping and Running Workflows on the Grid

  Optimization techniques for mapping and executing

Large Scale workflows

Discovery

  Data
 Where do the input datasets reside?

  Executables
 Where are the executables installed ?
 Do binaries exist somewhere that can be staged

to remote grid sites?

  Site Layout
 What does a grid site look like?

Pegasus WMS

Pegasus
Workflow
Mapper

Condor
DAGMan

TeraGrid
Open Science Grid
Campus resources
Local machine

Transformation
Catalog

Site Catalog

Workflow Description in XML

Condor
Schedd

Submit Host

Replica Catalog

Pegasus WMS restructures and optimizes the workflow, provides reliability

Properties

Replica Catalog Overview—finding data

  Replica Catalog stores mappings between
logical files and their target locations.

  Used to
 discover input files for the workflow
  track data products created
 data reuse

  Data is replicated for scalability, reliability and
availability

Replica Catalog

  Pegasus interfaces with a variety of replica catalogs
  File based Replica Catalog

  useful for small datasets (like this tutorial)
  cannot be shared across users.

  Database based Replica Catalog
 useful for medium sized datasets.
 can be used across users.

  Globus Replica Location Service
 useful for large scale data sets across multiple users.
 LIGO’s LDR deployment.

Replica Catalog
 Exercise: 2.2

  The rc-client is a command line tool to
interact with Replica Catalog.
 One client talks to all types of Replica Catalog

  Practical exercise (refer to Exercise 2.2):
 Use the rc-client to

 Populate the Replica Catalog
 Query the Replica Catalog
 Remove entries (offline exercise)

Site Catalog—finding resources
  Contains information about various sites on which

workflows may execute.
  For each site following information is stored

  Installed job-managers for different types of schedulers
  Installed GridFTP servers
  Local Replica Catalogs where data residing in that site has to be

catalogued
  Site Wide Profiles like environment variables
  Work and storage directories

Site Catalog Exercise
 Exercise: 2.3

  Two clients for generating a site catalog
  pegasus-get-sites

  Allows you to generate a site catalog
  for OSG grid sites by querying VORS
  for ISI skynet, TeraGrid, UC SofaGrid by querying a SQLLite2

database

  sc-client
  Allows you to generate a site catalog

  By specifying information about a site in a textual format in a file.
  One file per site

Site Catalog Entry

 <site handle="isi_skynet" sysinfo="INTEL32::LINUX” gridlaunch="/nfs/software/vds/vds/bin/
kickstart">

 <profile namespace=”env” key=”PEGASUS_HOME">/nfs/software/pegasus</profile>
 <lrc url="rlsn://smarty.isi.edu" />
 <gridftp url="gsiftp://skynet-data.isi.edu" storage="/nfs/storage01" major="2" minor="4"

patch="3" />
 <gridftp url="gsiftp://skynet-2.isi.edu" storage="/nfs/storage01" major="2" minor="4"

patch="3" />
 <jobmanager universe="vanilla" url="skynet-login.isi.edu/jobmanager-pbs" major="2"

minor="4" patch="3" total-nodes="93" />
 <jobmanager universe="transfer" url="skynet-login.isi.edu/jobmanager-fork" major="2"

minor="4" patch="3" total-nodes="93" />
 <workdirectory>/nfs/scratch01</workdirectory>

 </site>

Transformation Catalog ---- finding
codes

  Transformation Catalog maps logical transformations to their
physical locations

  Used to

  discover application codes installed on the grid sites

  discover statically compiled codes, that can be deployed at grid
sites on demand

Transformation Catalog Overview
  For each transformation following are stored

  logical name of the transformation
  Type of transformation (INSTALLED or

STATIC_BINARY)
  Architecture, OS, Glibc version
  the resource on the which the transformation is

available
  the URL for the physical transformation
  Profiles that associate runtime parameters like

environment variables, scheduler related information

Transformation Catalog Exercise
 (Offline)

  tc-client is a command line client that is
primarily used to configure the database TC

  Works even for file based transformation
catalog.

Pegasus-WMS Configuration

  Most of the configuration of Pegasus is done by properties.

  Properties can be specified
  On the command line
  In $HOME/.pegasusrc file
  In $PEGASUS_HOME/etc/properties

  All properties are described in $PEGASUS_HOME/doc/
properties.pdf

  For the tutorial the properties are configured in the $HOME/
pegasus-wms/config/properties file

 Outline of Tutorial

  Introduction to Pegasus WMS

  Composing a Simple Workflow In terms of DAX.

  Pegasus Internals

  Mapping and Running Workflows Locally

  Mapping and Running Workflows on the Grid

  Optimization techniques for mapping and executing

Large Scale workflows

Map and Execute Workflow Locally

  Take a 4 node diamond abstract workflow
(DAX) and map it to an executable workflow
that runs locally.

Generate

Findrange Findrange

Analyze

Basic Workflow Mapping
  Select where to run the computations

  Change task nodes into nodes with executable descriptions
  Execution location
  Environment variables initializes
  Appropriate command-line parameters set

  Select which data to access
  Add stage-in nodes to move data to computations
  Add stage-out nodes to transfer data out of remote sites to

storage
  Add data transfer nodes between computation nodes that

execute on different resources

Basic Workflow Mapping

  Add nodes that register the newly-created
data products

  Add nodes to create an execution directory
on a remote site

  Write out the workflow in a form
understandable by a workflow engine
  Include provenance capture steps

Pegasus Workflow Mapping

Original workflow: 15 compute nodes
devoid of resource assignment

Resulting workflow mapped onto
3 Grid sites:
11 compute nodes (4 reduced
based on available intermediate
data)
13 data stage-in nodes
8 inter-site data transfers
14 data stage-out nodes to long-
term storage
14 data registration nodes (data
cataloging)

4 1

8 5

10

9

13

12

15

9

4

8 3
7

10

13

12

15

 Exercise: 2.4
  Plan using Pegasus and submit the workflow to Condor

DAGMan/CondorG for local job submissions

  $ pegasus-plan -Dpegasus.user.properties=<properties
file> --dax <dax file> --dir <dags directory> -s local –o
local --nocleanup

  The output of pegasus-plan tells you the next command to
run.

  $ pegasus-run –Dpegasus.user.properties=<properties
file> --nodatabase <dag directory>

Exercise: 2.5 – Monitor using
Pegasus-status

  A perl wrapper around condor_q
  Allows you to see only the jobs of a particular

workflow
  Also can see what different type of jobs that

are executing
  Pegasus-status <dag directory>
  Pegasus-status –w <workflow> -t <time>

Exercise: 2.5 - Debugging

  The status of the workflow can be determined by
  Looking at the jobstate.log
  Or looking at the dagman out file (with suffix .dag.dagman.out)

  All jobs in Pegasus are launched by a wrapper executable
kickstart. Kickstart generates provenance information
including the exit code, and part of the remote application’s
stdout.

  In case of job failure look at kickstart output of the failed job.
  Jobname.out.XXX where XXX=000 to NNNN

DAGMan (“under the hood” of Pegasus)

  Pegasus uses DAGMan to run the
executable workflow

  Users may not have to interact with DAGMan
directly…

  …but they may (for debugging, optimization)
  Pegasus doesn’t expose all DAGMan

features

DAGMan (Directed Acyclic Graph
MANager)

  Runs workflows that can be specified as
Directed Acyclic Graphs

  Enforces DAG dependencies
  Progresses as far as possible in the face of

failures
  Provides retries, throttling, etc.
  Runs on top of Condor (and is itself a Condor

job)
  Doesn’t “care” whether node jobs are local or

Grid jobs

A simple DAG - Exercise 2.6

Generate

Findrange Findrange

Analyze

DAG file

  Defines the DAG shown previously
  Node names are case-sensitive
  Keywords are not case-sensitive

JOB generate_ID000001 generate_ID000001.sub
JOB findrange_ID000002 findrange_ID000002.sub
JOB findrange_ID000003 findrange_ID000003.sub
JOB analyze_ID000004 analyze_ID000004.sub
JOB diamond_0_pegasus_concat diamond_0_pegasus_concat.sub
JOB diamond_0_local_cdir diamond_0_local_cdir.sub

SCRIPT POST diamond_0_local_cdir /bin/exitpost
PARENT generate_ID000001 CHILD findrange_ID000002
PARENT generate_ID000001 CHILD findrange_ID000003
PARENT findrange_ID000002 CHILD analyze_ID000004
PARENT findrange_ID000003 CHILD analyze_ID000004
PARENT diamond_0_pegasus_concat CHILD generate_ID000001
PARENT diamond_0_local_cdir CHILD diamond_0_pegasus_concat

DAG node

  Treated as a unit
  Job or POST script determines node success

or failure

PRE script

Condor or
Stork job

POST script

Node

Condor_submit_dag

  Creates a Condor submit file for DAGMan
  Also submits it (unless –no_submit option is

given)
  -f option forces overwriting of existing files

Condor Monitoring

  Monitoring your DAG
 Condor_q –dag [name]
 Dagman.out file

% condor_q –dag train15

-- Submitter: train15@isi.edu : <128.9.72.178:43684> : viz-login.isi.edu
 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD
1860.0 train15 5/31 10:59 0+00:00:26 R 0 9.8 condor_dagman -f -
1861.0 |-Setup 5/31 10:59 0+00:00:12 R 0 9.8 nodejob Setup node

2 jobs; 0 idle, 2 running, 0 held

Exercise 2.7 - pegasus-remove

  Remove your workflow and associated jobs
  In future, would cleanup the remote

directories that are created during workflow
execution.

  Pegasus-remove <dag directory>

 Outline of Tutorial

  Introduction to Pegasus WMS

  Composing a Simple Workflow In terms of DAX.

  Pegasus Internals

  Mapping and Running Workflows Locally

  Mapping and Running Workflows on the Grid

  Optimization techniques for mapping and executing

Large Scale workflows

Executable Workflow

Map and Execute Montage
Workflow on Grid

  Take a montage abstract workflow (DAX) and
map it to an executable workflow that runs on
the Grid.

  The available sites are viz and wind.
  You can either use a single site or a

combination of these by specifying comma
separated sites on the command line.

Exercise: 2.8
  Plan using Pegasus and submit the workflow to

Condor DAGMan/CondorG for remote job
submissions

  Pegasus-run starts the monitoring daemon
(tailstatd) in the directory containing the condor
submit files

  Tailstatd parses the condor output and updates
the status of the workflow to a database

  Tailstatd updates job status to a text file
jobstate.log in the directory containing the condor
submit files.

 Outline of Tutorial

  Introduction to Pegasus WMS

  Composing a Simple Workflow In terms of DAX.

  Pegasus Internals

  Mapping and Running Workflows Locally

  Mapping and Running Workflows on the Grid

  Optimization techniques for mapping and executing

Large Scale workflows

Depth-first DAG traversal
  Get results more quickly
  Possibly clean up intermediate files more

quickly
  DAGMAN_SUBMIT_DEPTH_FIRST=True

DAG node priorities

  PRIORITY JobName PriorityValue
  Determines order of submission of ready

nodes
  Does not violate/change DAG semantics
  Mostly useful when DAG is throttled
  Higher Numerical value equals higher priority
  Version 6.9.5+

Node priorities can be configured in Pegasus Properties

Pegasus node priority properties

  pegasus.job.priority=<N>
 pegasus.transfer.stagein.priority=N
 pegasus.transfer.stageout.priority=N
 pegasus.transfer.inter.priority=N
 pegasus.transfer.*.priority=N
 For each job in TC or DAX define profile
 CONDOR::priority=N

Transfer Throttling

  Large-sized workflows result in large number of
transfer jobs being executed at once. Results in:
  Grid FTP server overload (connection refused errors etc)
  May result in a high load on the head node if transfers are

not configured to execute as third party transfers

  Need to throttle transfers
  Set pegasus.transfer.refiner property.
  Allows you to create chained transfer jobs or bundles of

transfer jobs
  Looks in your site catalog for pegasus profile

"bundle.stagein"

Throttling in DAGMan

  Maxjobs (limits jobs in queue/running)
  Maxidle (limits idle jobs)
  Maxpre (limits PRE scripts)
  Maxpost (limits POST scripts)
  All limits are per DAGMan, not global for the

pool

The above parameters can be configured in Pegasus Properties

Pegasus throttling properties

  pegasus.dagman.maxidle
  pegasus.dagman.maxjobs
  pegasus.dagman.maxpre
  pegasus.dagman.maxpost

Condor/DAGMan Throttling

  Condor configuration files
  Environment variables

(_CONDOR_<macroname>)
  DAGMan configuration file (6.9.2+)
  Condor_submit_dag command line

Throttling by category

  CATEGORY JobName CategoryName
  MAXJOBS CategoryName MaxJobsValue
  Applies the maxjobs setting to only jobs

assigned to the given category
  Global throttles still apply
  Useful with different types of jobs that cause

different loads
  Available in version 6.9.5+

PRE/POST scripts

  SCRIPT PRE|POST node script [arguments]
  All scripts run on submit machine
  If PRE script fails, node fails w/o running job

or POST script (for now…)
  If job fails, POST script is run
  If POST script fails, node fails
  Special macros:

 $JOB
 $RETURN (POST only)

VARS (per-node variables)

  VARS JobName
macroname="string" [macroname="string"...]

  Macroname can only contain alphanumeric
characters and underscore

  Value can’t contain single quotes; double
quotes must be escaped

  Macronames cannot begin with “queue”
  Macronames are not case-sensitive

Exercise 3.1 – node categories/throttles,
VARS, and scripts

Setup

Cleanup

Big job Small job Small job Small job

Nested DAGs

  One DAG is a node within a higher-level DAG
  Condor_submit_dag –no_submit
  Can be nested to arbitrary depth
  New rescue DAG semantics make this work

better

DAG config files

  In DAG file:
 CONFIG <filename>

  In config file:
 <macroname> = <value>
 Any DAGMan-related config macro

  Overrides global config
  Condor_submit_dag command-line flags

override this

Exercise 3.2 – Nested DAGs, DAG
config files, and overall throttling

Workflow Restructuring to improve Application
Performance

  Cluster small running jobs together to
achieve better performance.

  Why?
 Each job has scheduling overhead
 Need to make this overhead worthwhile.
  Ideally users should run a job on the grid that

takes at least 10 minutes to execute

Job clustering

Useful for small granularity jobs

Level-based
clustering

Vertical clustering Arbitrary
clustering

Exercise 3.3
Optional clustering exercise

  To trigger specify --cluster horizontal option to
pegasus-plan

  The granularity of clustering configured via Pegasus
profile key bundle
  Can be specified with a transformation in the

transformation catalog, or with sites in the site catalog
  Pegasus profile bundle specified in the site catalog.
  Bundle means how many clustered jobs for that

transformation you need on a particular site.

Transfer of Executables
  Allows the user to dynamically deploy scientific code on

remote sites

  Makes for easier debugging of scientific code.

  The executables are transferred as part of the workflow

  Currently, only statically compiled executables can be
 transferred

  Also we transfer any dependant executables that maybe
required. In your workflow, the mDiffFit job is dependant
on mDiff and mFitplane executables

Staging of executable exercise

  All the workflows that you ran had staging of executables

  In your transformation catalog, the entries were marked as
STATIC_BINARY on site “local”

  Selection of what executable to transfer
  pegasus.transformation.mapper property
  pegasus.transformation.selector property

Exercise 3.4- Running your Jobs
on non shared filesystem

Set the property pegasus.execute.*.filesystem.local true

Rescue DAG

  Generated when a node fails or DAGMan is
condor_rm’ed

  Saves state of DAG
  Run the rescue DAG to restart from where

you left off
  DAGMan 7.1.0 has improvements in how

rescue DAGs work

Recovery/bootstrap mode

  Most commonly, after condor_hold/
condor_release of DAGMan

  Also after DAGMan crash/restart
  Restores DAG state by reading node job logs

Node retries

  RETRY JobName NumberOfRetries
[UNLESS-EXIT value]

  Node is retried as a whole
  pegasus.dagman.retry=<N>

What we’re skipping

  Recursive Workflows
  Partitioning Workflows
  Multiple DAGs per DAGMan instance
  Stork
  DAG abort
  Visualizing DAGs with dot

  See the Pegasus and DAGMan manuals
online!

Relevant Links

 Pegasus: pegasus.isi.edu
 DAGMan: www.cs.wisc.edu/condor/dagman

 Tutorial materials available at:
http://pegasus.isi.edu/tutorial/condor08/index.php

 For more questions: pegasus@isi.edu

Relevant Links

  NSF Workshop on Challenges of Scientific Workflows :
www.isi.edu/nsf-workflows06, E. Deelman and Y. Gil (chairs)

  Workflows for e-Science, Taylor, I.J.; Deelman, E.; Gannon,
D.B.; Shields, M. (Eds.), Dec. 2006

  Open Science Grid: www.opensciencegrid.org
  LIGO: www.ligo.caltech.edu/
  SCEC: www.scec.org
  Montage: montage.ipac.caltech.edu/
  Condor: www.cs.wisc.edu/condor/
  Globus: www.globus.org
  TeraGrid: www.teragrid.org

