Static Slicing of
Binary Executables
with DynInst

Tugrul Ince

University of Maryland

Slicing

intfx=1y=2;
{

printf("Just set the number to 42").
}

else {
X=y-= 4.
printf("Not setting variable number");

}

University of Maryland

Motivation

e Slicing is historically used for:
- Debugging
- Software Maintenance
- Parallelization

e Generally on the source code

e Binary executables
- Moving dynamic analysis to static
» Function pointers
Improve code generation
Identifying malicious code
Reverse-engineering viruses
Binary Profilers

University of Maryland

Slicing

e Weiser's original definition

- identifying all program code that can in any way affect
the value of a given variable

- This is now called "static backward slicing"

e Static Forward Slicing

- Identifying all statements and control predicates
dependent on the variable in the slicing criterion

e Dynamic Slicing

- Identifying program code that actually changes the value
of a given variable, determined at runtime.

University of Maryland

How to Determine a Slice

e Construct a Program Dependence Graph

- A Combination of Data Dependency Graph and Control
Dependency Graph

e Identify Data Dependency

3
a

1. a:
2. b:
b depends on a
e Identify Control Dependency

1. if a=true then
p b:=1

3. else

4. c:=0

Both assignments depend on if statement

University of Maryland

How to Determine a Slice

int main() {
register int k=0;
register int i=0;
register int j=0;

if(i==0) {
k=1;
j=b-k:
}
else {
k=7;
j=k-5;
}
i=k;
rintf("Printing i, i and k
P g
i,j, k)
return O;

}

<main+9>: mov $0x0,%eax
<main+14>: sub %eax,%esp
<main+16>: movl $0x0,0xfffffff8(%ebp)
<main+23> cmpl $0x0,0xfffffff8(%ebp)

<main+99>: call 0x8048368 <printf@plt>

University of Maryland

University of Maryland

University of Maryland

Dependency Graph
[mov__ %eax,OxfFFffff8(%ebp) | Node

University of Maryland

Implementation

e Static Analysis
- DynInst loads executable in stopped state

e Building Data Dependency Graph

- For each instruction in a basic block, determine
registers/variables that are read/written

* Not so easy, large instruction set

- When an instruction reads a register/variable,
mark it as dependent on the one that recently
modified that reg/var

University of Maryland

Building Control Dependency Graph

® A node V is post-dominated by a node W if
every directed path from V to Stop contains

W

e An instruction Y is control dependent on

another instruction X iff

- There exists a directed path P from X to Y with another
instruction Z in P, post-dominated by Y

- X is not post-dominated by Y

Post
Dominator
Tree

University of Maryland

Challenges

e Indirect Jump Instructions
- Hard to create control flow graph
- Very common in switch statements
* Follows a pattern

e Aliasing
- Currently not handled
- Pointers
- Treat all memory as a single object
* Overly Conservative
» EEL's approach

University of Maryland

On-demand Computation

e Generation of Data and Control
Dependency Graph is costly, so is Slicing

e Since it is static, it is enough to
compute these graphs only once

e Therefore, they are computed only on-
demand and stored until the execution
finishes

University of Maryland

Annotation Framework

e Many analyses generate data while
examining instructions/functions etc.
- Generally costly operations
- Store the result |

e New analysis means new variable(s)

added to class definition

- Error prone
- APT changes
- Requires rebuild

University of Maryland

Annotation Framework

Create a unified Annotation Framework
iInstead

Use a well-defined interface for each
object that needs to be annotated

as to be extensible
- Add new annotation types at runtime

Support for storing metadata along with
data

University of Maryland

Annotation Framework Example

e Requires development effort

e Not desirable

- Error-prone
- Tedious

University of Maryland

Annotation Framework

University of Maryland

Annotation Framework

University of Maryland

Example

AnnotationType type =
function.createAnnotationType("Slice");

function.insertAnnotation(type,
new Annotation(slicingGraph));

function.findAnnotation(type,fillMe);

University of Maryland

Summary

e Slicing
- Status

* Intra-procedural Slicing implemented for x86
Linux and Solaris 2.9

» Inter-procedural Slicing is on the way
- Aliasing not supported yet

e Annotation Framework
- Status: Desighed, at implementation stage
- Unifies the way objects are annotated
- Slicing will be the first user

University of Maryland

